Paddle Inference部署推理(三)

三:Paddle Inference推理 导出模型

Paddle Inference支持使用飞桨静态图模型进行推理,您可以通过以下两种方式获取静态图模型:

(1)飞桨框架导出推理模型

飞桨框架在训练模型过程中,会在本地存储最终训练产出的模型结构和权重参数,这个步骤中存储的模型文件包含了模型的前向、反向以及优化器等信息(即常说的动态图模型,模型参数文件名为*.pdparams和*.pdopt)。 而在进行模型部署时,我们只需要模型的前向结构,以及前向的权重参数,并且会针对网络结构做部署优化(如算子融合等),以保证部署性能更优,因此在模型部署阶段,需要进行模型导出(即常说的静态图模型,模型参数文件名为*.pdmodel和*.pdiparams)。 您可以参考此篇文档导出用于推理的飞桨模型:

(2)导入其他框架模型(X2Paddle)

通过X2Paddle工具,目前支持将Pytorch、ONNX、TensorFlow、Caffe的模型转换成飞桨静态图模型结构,具体使用方法请参考以下文档:

将Pytorch、TensorFlow、ONNX等框架转换成飞桨模型

(可选)模型结构可视化

在得到用于Paddle Inference推理的 飞桨静态图模型 后,推荐您使用 VisualDL 或其他类似工具对您的模型进行查看,方便您后续的推理应用开发。 您可以参考以下文档可视化您的模型:

模型结构可视化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值