
微调大模型
文章平均质量分 79
帅小柏
2019年 “百家号杯”全国大学生新媒体知识竞赛 省赛特等奖
2020年“海信杯”第二届吉林省大学生人工智能创新大赛 省赛一等奖
2020年高教社杯全国大学生数学建模竞赛 三等奖
2021-2022年度第三届全国大学生算法设计与编程挑战赛(冬季赛) 金奖
两年参加ACM省赛经历
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大语言模型综述简明总结,全面了解LLM看这一篇就够了!!!!!!!!!!
评估指标:PASS@k排行榜链接源代码链接参数数量 ≤ 1B。原创 2025-01-14 14:15:30 · 437 阅读 · 0 评论 -
使用 CTC 微调预训练 Fairseq下的wav2vec2.0模型的详细指南
通过上述详细步骤,你可以成功地微调一个预训练的 CTC 模型。确保数据文件结构正确,必要的路径在配置文件中设置正确,并使用合适的端口号进行分布式训练。希望这篇博文对你有所帮助!原创 2024-09-21 20:37:56 · 942 阅读 · 0 评论 -
使用 Fairseq 进行音频预训练:Train a wav2vec 2.0 base model配置与实现
随着深度学习技术的不断发展,音频预训练在语音识别和自然语言处理领域取得了显著进展。Fairseq 是一个由 Facebook AI Research 开发的开源序列建模工具包,广泛应用于各种自然语言处理任务,包括音频预训练。本文将详细介绍如何使用 Fairseq 进行音频预训练,包括配置文件的编写和训练命令的执行。本文详细介绍了如何使用 Fairseq 进行音频预训练,包括配置文件的编写和训练命令的执行。通过正确配置训练参数,可以有效地进行音频预训练,提升模型在下游任务中的表现。编写配置文件。原创 2024-09-18 10:32:29 · 825 阅读 · 2 评论 -
生成音频清单文件:使用 wav2vec_manifest.py 脚本
通过脚本,我们可以方便地生成音频文件的清单文件,并将数据分为训练集和验证集。这对于后续的模型训练和数据管理非常有帮助。希望本文能帮助您顺利完成音频数据的预处理任务。如果您有任何问题或建议,欢迎在评论区留言!原创 2024-09-18 09:39:49 · 586 阅读 · 0 评论 -
使用 SSH ProxyJump 一步到位连接远程服务器
ProxyJump通过使用 SSH 的ProxyJump选项,你可以一步到位地连接到目标服务器,简化了操作步骤并提高了连接的安全性和稳定性。配置 SSH 配置文件可以进一步简化日常操作,使得连接更加方便快捷。希望这篇指南能帮助你更好地管理和使用 SSH 连接,提升你的工作效率。原创 2024-09-17 14:13:05 · 1042 阅读 · 0 评论 -
【阅读文献】一个使用大语言模型的端到端语音概要
抽象语音摘要(SSum)旨在从较长的语音输入中直接生成类似人类的文本摘要。与文本摘要任务相比.SSum面临以下核心挑战及其解决的方法:挑战一:长时间语音的处理论文的解决方法:通过把长语音分成几个小段来处理,每段独立进行分析,再把这些小段的结果结合起来。挑战二:语音到文本的复杂转换论文的解决方法:使用了一种叫做Q-Former的框架,它能把长时间的语音“翻译”成机器能理解的固定长度的表示这就像是把一篇长篇小说分成一个个小故事,再从每个小故事中提取出关键词。挑战三:语音和文本之间的差异论文的解决方法:设计了一个原创 2024-09-08 09:11:48 · 263 阅读 · 0 评论 -
如何配置 Fairseq 环境:详细指南
通过以上步骤,你应该能够成功配置fairseq环境。我们从创建虚拟环境开始,然后安装了所需的依赖项,克隆了fairseq仓库,并最终验证安装是否成功。配置fairseq环境虽然涉及多个步骤,但每一步都是确保你能够顺利使用fairseq的基础。希望这篇指南对你有所帮助,祝你在使用fairseq进行自然语言处理任务时一切顺利!如果你在安装过程中遇到任何问题,可以查看fairseq 的官方文档或在 GitHub 上提交问题。原创 2024-09-08 09:10:33 · 924 阅读 · 1 评论 -
使用Hugging Face Datasets加载和处理数据集
从datasets导入所有功能from datasets import *加载在线数据集# 加载在线数据集datasets = load_dataset("madao33/new-title-chinese")datasets加载数据集合集中某一项任务# 加载数据集合集中某一项任务boolq_dataset = load_dataset("super_glue", "boolq")boolq_dataset按照数据集划分进行加载# 按照数据集划分进行加载dataset = lo原创 2024-09-03 14:57:59 · 676 阅读 · 0 评论 -
突破Colab束缚:轻松在服务器上用Unsloth微调Llama 3.1大模型!
目的:该代码的主要目的是对一个大型语言模型进行微调,使其能够生成特定类型的文本(唐诗)。微调是深度学习中一种常见的方法,通过在特定任务上重新训练预训练模型,以提高模型在该任务上的表现。流程配置模型:设置模型参数和加载预训练模型。数据准备:加载和格式化数据集,以便模型能够接受输入。训练:通过设置训练参数并调用训练函数,进行模型微调。保存模型:训练完成后,保存微调后的模型和标记器,以便后续使用。技术要点使用 GPU:代码中使用了cuda,表明旨在利用GPU加速训练。4位量化。原创 2024-08-26 09:32:01 · 784 阅读 · 0 评论