
神经网络训练
文章平均质量分 85
留学生作业,专门做神经网络训练相关。
千歌叹尽执夏
旅程:(FPGA原厂 - 初级架构师)→(晶圆测封厂 - FPGA开发)。技术交流,欢迎私信,[email protected]。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
专栏汇总:神经网络篇(持续更新~)
神经网络在FPGA(现场可编程门阵列)上部署的目的是为了实现高效、低延迟的推理计算。FPGA具有高度并行处理能力和可定制硬件架构,能够加速神经网络的计算速度,降低功耗,并在实时应用中提供更快的响应时间。这在边缘计算、嵌入式系统和对性能要求苛刻的应用(如自动驾驶、医疗影像分析和金融交易)中特别有意义,因为它可以在有限的硬件资源下实现高效的深度学习推理,从而提升系统的整体性能和效能。原创 2024-08-03 16:24:39 · 593 阅读 · 0 评论 -
神经网络训练(二):基于残差连接的图片分类网络(进阶篇③)
8月1号写完了神经网络训练(二):基于残差连接的图片分类网络(进阶篇②),进行了概述及理论介绍,本篇继续写第四章,对本项目做一个总结。原创 2024-08-03 15:21:28 · 790 阅读 · 0 评论 -
神经网络训练(二):基于残差连接的图片分类网络(进阶篇②)
原始的ResNet18模型在不使用预训练权重的情况下,很难在10分钟内达到我们的需求。在测试过程中,我们发现仅通过调整模型的超参数是不可能获得更好的结果的,因此我们针对我们的数据集进行优化改进。原创 2024-08-01 08:06:41 · 1128 阅读 · 0 评论 -
神经网络训练(二):基于残差连接的图片分类网络(进阶篇①)
在这个项目中,我们的网络需要在10分钟内完成训练。为了获得更好的效果,我们使用了ResNet18[1]网络,ResNet专门设计用于解决深度学习中的梯度消失和梯度爆炸问题。ResNet最初由微软亚洲研究院的Kaiming He等人在2015年提出,并在ImageNet图像识别比赛中取得了非常好的成绩。原始的ResNet网络是用于训练ImageNet[2]数据集,因此我们必须改进原始的网络来适应本次项目的数据集,下面我将详细介绍ResNet18以及我为它来适应我们的数据集所做的全部工作。原创 2024-07-30 17:46:10 · 1514 阅读 · 0 评论 -
神经网络训练(一):基于残差连接的图片分类网络(基础版)
基于残差连接的图片分类网络,本网络使用ResNet18作为基础模块,根据cifa10的特点进行改进网络,使用交叉熵损失函数和SGD优化器。本网络在cifa10数据集上不使用预训练参数,经过数据增强,训练30轮达到了85%的分类准确率。原创 2024-07-02 02:43:50 · 559 阅读 · 0 评论