Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
- Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
- Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
分析
博主第一次写搜索题
先介绍一下 bfs() 和 dfs() 的区别
- bfs() :指的是从起点向多个方向同时出发,多个方向一起搜,最先搜到的即为最优解
- dfs() :指的是从起点出发,一层一层的往下走,碰到这个点可以走,就深入走下去,直到搜到为止
这道题博主是用的 bfs() 解题
从题意中我们得知,有三种方向供选择,由于等下可能会重复,故我们要记录每个点是否已经走过
用 for 循环每次试水一种走法,并判断是否满足条件,若满足则标记后放入队列,miu 加 1
每种走法会对应很多种分支走法,我们这里的miu对应的就是每种走法所耗费的时间
当触碰到奶牛的位置时候,即为最优解,因为是用最少的时间到达的
Code
#include<iostream>
#include<algorithm>
#include<queue>
#include<string.h>
using namespace std;
const int maxn = 100002;
int miu[maxn];
int vis[maxn];
int bfs(int n,int m)
{
int now,next;
miu[n]=0;//记录起点
vis[n]=1;//起点已经走过
queue<int>q;
q.push(n);//放入起点 :农夫的位置
while(!q.empty())
{
now=q.front();//当前位置
q.pop();//弹出
// cout<<"----------------------------------------------------"<<endl;
for(int i = 1 ; i <= 3 ; i++)// 三种走法
{
if(i == 1) next=now-1;//试水第一种走法
else if(i == 2) next=now+1;//试水第二种走法
else if(i == 3) next=now*2;//试水第三种走法
if(next<0 || next>maxn) continue;//越界了,不往下走了,继续i++
if(vis[next] == 0)//还没走过这个点
{
vis[next]=1; //标记已走
q.push(next); //放进队列:新的一个位置
miu[next]=miu[now]+1;//花了一分钟
// cout<<"测试 : now = "<<now<<" next = "<<next<<" miu["<<next<<"] = "<<miu[next]<<endl;
}
if(next == m) return miu[next];//到达了目标点,返回到达目标点所花费的时间
}
}
}
int main()
{
memset(vis,0,sizeof(vis));
memset(miu,0,sizeof(miu));
int fj,cow;
cin>>fj>>cow;
if(fj>=cow)
{
cout<<fj-cow<<endl;
}
else
{
cout<<bfs(fj,cow)<<endl;
}
return 0;
}