书生大模型实战营-LMDeploy 量化部署进阶实践
任务要点
- 使用结合W4A16量化与kv cache量化的internlm2_5-1_8b-chat模型封装本地API并与大模型进行一次对话,截图需包括显存占用情况与大模型回复
- 使用Function call功能让大模型完成一次简单的"加"与"乘"函数调用,截图需包括大模型回复的工具调用情况
实践流程
环境配置
- 开发机选择 30% A100,镜像选择为 Cuda12.2-conda。
我们要运行参数量为7B的InternLM2.5
,由InternLM2.5
的码仓查询InternLM2.5-7b-chat
的config.json
文件可知,该模型的权重被存储为bfloat16
格式
对于一个7B(70亿)参数的模型,每个参数使用16位浮点数(等于 2个 Byte)表示,则模型的权重大小约为:
7×10^9 parameters×2 Bytes/parameter=14GB
70亿个参数×每个参数占用2个字节=14GB
所以需要大于14GB的显存,选择 30%A100*1(24GB显存容量)
在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。
conda create -n lmdeploy python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3
pip install datasets==2.19.2
InternStudio环境获取模型
为方便文件管理,我们需要一个存放模型的目录,统一放置在/root/models/目录。
运行以下命令,创建文件夹并设置开发机共享目录的软链接。
mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models
此时,可以看到/root/models
中会出现internlm2_5-7b-chat
、internlm2_5-1_8b-chat
和InternVL2-26B
文件夹。
教程使用internlm2_5-7b-chat
和InternVL2-26B
作为演示。由于上述模型量化会消耗大量时间(约8h),量化作业使用internlm2_5-1_8b-chat
模型完成。
LMDeploy验证启动模型文件
在量化工作正式开始前,先验证一下获取的模型文件能否正常工作
进入创建好的conda环境并启动InternLM2_5-7b-chat
conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-1_8b-chat
稍待片刻,启动成功后,会显示如下
此时,我们可以在CLI(“命令行界面” Command Line Interface的缩写)中和InternLM2.5尽情对话了,注意输入内容完成后需要按两次回车才能够执行,以下为示例。
注意此时右上角InternStudio的资源监控,观察与后面量化部署的差异
当前显存占用约为23GB
请记住现在显存占用约23GB,先圈起来,待会要用上。
如果选择 50%A100*1 建立机器,同样运行InternLM2.5 7B模型,会发现此时显存占用为36GB。
由上文可知InternLM2.5 7B模型为bf16
,LMDpeloy推理精度为bf16
的7B
模型权重需要占用14GB显存;如下图所示,lmdeploy
默认设置cache-max-entry-count
为0.8,即kv cache
占用剩余显存的80%
对于24GB
的显卡,即30%A100,权重占用14GB显存,剩余显存24-14=10GB,因此kv cache占用10GB*0.8=8GB,加上原来的权重14GB,总共占用14+8=22GB。
而对于40GB
的显卡,即50%A100,权重占用14GB,剩余显存40-14=26GB,因此kv cache占用26GB*0.8=20.8GB,加上原来的权重14GB,总共占用34.8GB。
实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于22GB和34.8GB。
再次验证:
根据前文的计算方法,InternLM2.5 1.8B
模型同样为bf16
,LMDpeloy推理精度为bf16的1.8B模型权重需要占用1.8 * 10^9 * 2Byte=3.6GB显存;lmdeploy默认设置cache-max-entry-count为0.8,即kv cache占用剩余显存的80%;此时对于24GB
的显卡,即30%A100,权重占用3.6B显存,剩余显存24-3.6=20.4GB,因此kv cache占用20.4GB*0.8=16.32GB,加上原来的权重3.6GB,总共占用19.92GB
实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于19.92GB.
此外,如果想要实现显存资源的监控,我们也可以新开一个终端输入如下两条指令的任意一条,查看命令输入时的显存占用情况。
nvidia-smi
or
studio-smi
注释:实验室提供的环境为虚拟化的显存,nvidia-smi是NVIDIA GPU驱动程序的一部分,用于显示NVIDIA GPU的当前状态,故当前环境只能看80GB单卡 A100 显存使用情况,无法观测虚拟化后30%或50%A100等的显存情况。针对于此,实验室提供了studio-smi 命令工具,能够观测到虚拟化后的显存使用情况。
LMDeploy与InternLM2.5
LMDeploy API部署InternLM2.5
上面是直接在本地部署InternLM2.5。实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问
-
启动API服务器
进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:conda activate lmdeploy lmdeploy serve api_server \ /root/models/internlm2_5-7b-chat \ --model-format hf \ --quant-policy 0 \ --server-name 0.0.0.0 \ --server-port 23333 \ --tp 1
命令解释:
- lmdeploy serve api_server:这个命令用于启动API服务器。
- /root/models/internlm2_5-7b-chat:这是模型的路径。
- –model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
- –quant-policy 0:这个参数指定了量化策略。
- –server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
- –server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
- –tp 1:这个参数表示并行数量(GPU数量)。
稍待片刻,终端显示如下
可以看到,已经成功在本地23333端口启动了FastAPI服务
这一步由于部署在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd或powershell窗口,输入命令如下:
ssh -p 39510 root@ssh.intern-ai.org.cn -CNg -L 23333:127.0.0.1:23333 -o StrictHostKeyChecking=no
记住,ssh 端口号请替换为自己的
经过端口转发后,浏览器访问http://127.0.0.1:23333,可看到如下界面
以命令行形式连接API服务器
关闭http://127.0.0.1:23333
网页,但保持终端和本地窗口不动,新建一个终端
运行如下命令,激活conda环境并启动命令行客户端
conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333
稍待片刻,等出现double enter to end input >>>的输入提示即启动成功,此时便可以随意与InternLM2.5
对话,同样是两下回车确定,输入exit退出。
以Gradio网页形式连接API服务器
保持第一个终端不动,在新建终端中输入exit退出
输入以下命令,使用Gradio作为前端,启动网页
lmdeploy serve gradio http://localhost:23333 \
--server-name 0.0.0.0 \
--server-port 6006
出现如下页面,说明在6666端口启动了Gradio
再次做一下ssh转发(因为此时端口发生了变化)
输入命令如下: 记住,ssh 端口号请替换为自己的
ssh -p 39510 root@ssh.intern-ai.org.cn -CNg -L 6006:127.0.0.1:6006 -o StrictHostKeyChecking=no
打开浏览器,访问地址http://127.0.0.1:6006,然后就可以与模型尽情对话了
LMDeploy Lite
随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。
LMDeploy 提供了权重量化和 k/v cache两种策略。
设置最大kv cache缓存大小
kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。
模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。
LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count
参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8
。
InternLM2.5正常运行时占用显存大约23G
执行以下命令,再来观看占用显存情况
lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4
可以看到减少了约4GB的显存
让我们分析一下4GB显存的减少原因:
-
对于修改kv cache默认占用之前:
1、在 BF16 精度下,7B模型权重占用14GB
2、kv cache占用8GB:剩余显存24-14=10GB,kv cache默认占用80%,即10*0.8=8GB
3、其他项1GB
23GB=权重占用14GB+kv cache占用8GB+其它项1GB
-
对于修改kv cache占用之后:
1、在 BF16 精度下,7B模型权重占用14GB
2、kv cache占用4GB:剩余显存24-14=10GB,kv cache修改为占用40%,即10*0.4=4GB
3、其他项1GB
故19GB=权重占用14GB+kv cache占用4GB+其它项1GB
所以此刻减少的4GB显存占用就是从10GB0.8-10GB0.4=4GB,这里计算得来。
设置在线 kv cache int4/int8 量化
自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy 和cache-max-entry-count参数。目前,LMDeploy 规定 quant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。
输入以下指令,启动API服务器
lmdeploy serve api_server \
/root/models/internlm2_5-1_8b-chat \
--model-format hf \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
稍待片刻,显示如下即代表服务启动成功
可以参考上面与模型进行对话,这里注意是为了观察显存占用情况
此时显存占用是19G左右,均因设置kv cache占用参数cache-max-entry-count至0.4而减少了8GB显存占用。
此时19GB的显存占用与设置最大kv cache缓存大小中19GB的显存占用的区别
由于都使用BF16精度下的internlm2.5 7B模型,故剩余显存均为10GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即10GB*0.4=4GB。
但quant-policy 设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟4GB的kv cache。
相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍。
W4A16 模型量化和部署
模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。
那么W4A16
又是什么意思呢?
- W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小
- A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生
因此,W4A16的量化配置意味着:
- 权重被量化为4位整数
- 激活保持为16位浮点数
在最新的版本中,LMDeploy使用的是AWQ
算法,能够实现模型的4bit
权重量化
- 输入以下指令,执行量化工作。(不建议运行,在InternStudio上运行需要8小时)
lmdeploy lite auto_awq \ /root/models/internlm2_5-7b-chat \ --calib-dataset 'ptb' \ --calib-samples 128 \ --calib-seqlen 2048 \ --w-bits 4 \ --w-group-size 128 \ --batch-size 1 \ --search-scale False \ --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit
- 完成作业时请使用1.8B模型进行量化:(建议运行以下命令)
lmdeploy lite auto_awq \ /root/models/internlm2_5-1_8b-chat \ --calib-dataset 'ptb' \ --calib-samples 128 \ --calib-seqlen 2048 \ --w-bits 4 \ --w-group-size 128 \ --batch-size 1 \ --search-scale False \ --work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit
命令解释:
- lmdeploy lite auto_awq: lite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)
- /root/models/internlm2_5-7b-chat: 模型文件的路径。
- –calib-dataset ‘ptb’: 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)
- –calib-samples 128: 这指定了用于校准的样本数量—128个样本
- –calib-seqlen 2048: 这指定了校准过程中使用的序列长度—2048
- –w-bits 4: 这表示权重(weights)的位数将被量化为4位
- –work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果
等终端输出如下时,说明正在推理中,稍待片刻
如果此处出现报错:TypeError: ‘NoneType’ object is not callable,原因是 当前版本的 datasets3.0 无法下载calibrate数据集 在命令前加一行 pip install datasets==2.19.2 可以解决
等待推理完成,在/root/models
文件夹下便会出现我们量化后的模型模型文件。
量化后的模型和原本的模型区别:
-
最明显的两点是模型文件大小以及占据显存大小。
输入如下指令查看在当前目录中显示所有子目录的大小-
查看量化后模型的大小
cd /root/models/ du -sh *
输出结果如下(其余文件夹都是以软链接的形式存在的,不占用空间,故显示为0)
-
查看原模型大小
cd /root/share/new_models/Shanghai_AI_Laboratory/ du -sh *
输出结果如下
-
-
对比发现:
- 原始模型大小:15G
- 量化后模型的大小:4.9G
-
对比显存占用情况呢
输入以下指令启动量化后的模型。conda activate lmdeploy lmdeploy chat /root/models/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq
稍待片刻,观测右上角的显存占用情况
可以发现,相比较于原先的23GB显存占用,W4A16量化后的模型少了约2GB的显存占用 -
分析一下2GB显存的减少的原因:
-
对于W4A16量化之前,即如1.3 LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(23GB):
1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB
2、kv cache占用8GB:剩余显存24-14=10GB,kv cache默认占用80%,即10*0.8=8GB
3、其他项1GB
23GB=权重占用14GB+kv cache占用8GB+其它项1GB
-
对于W4A16量化之后的显存占用情况(20.9GB):
1、在 int4 精度下,7B模型权重占用3.5GB:14/4=3.5GB
注释:bfloat16
是16位的浮点数格式,占用2字节(16位)的存储空间。int4是4位的整数格式,占用0.5字节(4位)的存储空间。因此,从bfloat16到int4的转换理论上可以将模型权重的大小减少到原来的1/4,即7B个int4参数仅占用3.5GB的显存。2、kv cache占用16.4GB:剩余显存24-3.5=20.5GB,kv cache默认占用80%,即20.5*0.8=16.4GB
3、其他项1GB
20.9GB=权重占用3.5GB+kv cache占用16.4GB+其它项1GB
-
W4A16 量化+ KV cache+KV cache 量化
输入以下指令,启用量化后的模型、并设定kv cache占用和kv cache int4量化
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/internlm2_5-7b-chat-w4a16-4bit/ \
--model-format awq \
--quant-policy 4 \
--cache-max-entry-count 0.4\
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
此时显存占用约为13.5GB
-
分析一下此刻的显存占用情况:
1、在 int4 精度下,7B模型权重占用3.5GB:14/4=3.5GB2、kv cache占用16.4GB:剩余显存24-3.5=20.5GB,kv cache占用40%,即20.5*0.4=8.2GB
3、其他项1.8GB
13.5GB=权重占用3.5GB+kv cache占用8.2GB+其它项1.8GB
LMDeploy与InternVL2
本次选用InternVL2-26B进行演示,其实就根本来说作为一款VLM和上述的InternLM2.5在操作上并无本质区别,仅是多出了"图片输入"这一额外步骤。
LMDeploy Lite
InternVL2-26B需要约70+GB显存,但是为了让我们能够在30%A100上运行,需要先进行量化操作,这也是量化本身的意义所在——即降低模型部署成本
-
W4A16 模型量化和部署
针对InternVL系列模型,让我们先进入conda环境,并输入以下指令,执行模型的量化工作。(本步骤耗时较长,请耐心等待)conda activate lmdeploy lmdeploy lite auto_awq \ /root/models/InternVL2-26B \ --calib-dataset 'ptb' \ --calib-samples 128 \ --calib-seqlen 2048 \ --w-bits 4 \ --w-group-size 128 \ --batch-size 1 \ --search-scale False \ --work-dir /root/models/InternVL2-26B-w4a16-4bit
等终端输出如下
正在推理中
这里出错了!!!
这个错误发生在尝试保存量化后的模型时,主要原因是配置文件中找不到 ‘architectures’ 这个关键字段
由于InternVL2-26B软链接的share目录所在的文件系统是只读的,所以无法修改目标文件,需要将整个模型文件复制到可写目录cp -r /root/models/InternVL2-26B /root/model/
打开/root/model/InternVL2-26B/configuration_internvl_chat.py文件
加入以下代码# 确保 llm_config 中有 'architectures' 键,避免程序崩溃 KeyError if llm_config.get('architectures') is None: llm_config['architectures'] = ['LlamaForCausalLM'] # 设置默认值 logger.info("'architectures' key is missing in llm_config. Setting default value: ['LlamaForCausalLM'].")
解决该问题后重新等待推理完成,便可以在/root/models/内看到对应的模型文件conda activate lmdeploy lmdeploy lite auto_awq \ /root/model/InternVL2-26B \ --calib-dataset 'ptb' \ --calib-samples 128 \ --calib-seqlen 2048 \ --w-bits 4 \ --w-group-size 128 \ --batch-size 1 \ --search-scale False \ --work-dir /root/models/InternVL2-26B-w4a16-4bit
-
W4A16 量化+ KV cache+KV cache 量化
输入以下指令,让我们启用量化后的模型lmdeploy serve api_server \ /root/models/InternVL2-26B-w4a16-4bit \ --model-format awq \ --quant-policy 4 \ --cache-max-entry-count 0.1\ --server-name 0.0.0.0 \ --server-port 23333 \ --tp 1
启动后观测显存占用情况,此时只需要约23.8GB的显存,说明已经是一张30%A100即可部署的模型了
根据InternVL2介绍,InternVL2 26B是由一个6B的ViT、一个100M的MLP以及一个19.86B的internlm组成的。
-
分析一下显存占用情况
- 使用A100 80GB直接启动
InternVL2 26B
模型的显存占用情况:- 在 fp16 精度下,6BViT模型权重占用12GB:60×10^9 parameters×2 Bytes/parameter=12GB
- 在 fp16 精度下,19.86B≈20B的internlm模型权重占用40GB:200×10^9 parameters×2 Bytes/parameter=40GB
- kv cache占用22.4GB:剩余显存80-12-40=28GB,kv cache默认占用80%,即28*0.8=22.4GB
- 其他项
- 总占用=Vit权重占用12GB+internlm模型权重占用40GB+kv cache占用22.4GB+其他项≥74.4G
- 使用30%A100 24GB显存容量 联合部署的显存情况:
- 在 fp16 精度下,6BViT模型权重占用12GB:60×10^9 parameters×2 Bytes/parameter=12GB (ViT使用精度为fp16的pytorch推理,量化只对internlm起效果)
- 在 int4 精度下,19.86B≈20B的internlm模型权重占用10GB:200×10^9 parameters×0.5 Bytes/parameter=10GB
- kv cache占用0.2GB:剩余显存24-12-10=2GB,kv cache修改为占用10%,即2*0.1=0.2GB
- 其他项1.6GB
- 23.8GB=Vit权重占用12GB+internlm模型权重占用10GB+kv cache占用0.2GB+其他项1.6GB
如果此时推理图片,则会显示剩余显存不足,这是因为推理图片的时候pytorch会占用额外的激活显存,故需要开启50%A100进行图片推理
- 使用A100 80GB直接启动
LMDeploy API部署InternVL2
具体封装操作与之前大同小异,仅仅在数个指令细节上作调整
通过以下命令启动API服务器,部署InternVL2模型:
conda activate lmdeploy
lmdeploy serve api_server \
/root/models/InternVL2-26B-w4a16-4bit/ \
--model-format awq \
--quant-policy 4 \
--cache-max-entry-count 0.1 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
其余步骤与之前内容一致
-
进行SSH端口转发
-
访问http://127.0.0.1:23333
-
使用命令行形式连接API服务器
-
使用Gradio网页形式连接API服务器
LMDeploy之FastAPI与Function call
上述均是借助FastAPI封装一个API出来让LMDeploy自行进行访问,这里我们依托于LMDeploy封装出来的API进行更加灵活更具DIY的开发
API开发
-
输入以下指令启动API服务器
conda activate lmdeploy lmdeploy serve api_server \ /root/models/internlm2_5-1_8b-chat-w4a16-4bit \ --model-format awq \ --cache-max-entry-count 0.4 \ --quant-policy 4 \ --server-name 0.0.0.0 \ --server-port 23333 \ --tp 1
-
保持当前终端窗口不动,新建一个终端并新建
internlm2_5.py
touch /root/internlm2_5.py
-
将以下内容写进
internlm2_5.py
# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互 from openai import OpenAI # 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL client = OpenAI( api_key='YOUR_API_KEY', # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可 base_url="http://0.0.0.0:23333/v1" # 指定API的基础URL,这里使用了本地地址和端口 ) # 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID # models.list()返回一个模型列表,每个模型都有一个id属性 model_name = client.models.list().data[0].id # 使用client.chat.completions.create()方法创建一个聊天补全请求 # 这个方法需要传入多个参数来指定请求的细节 response = client.chat.completions.create( model=model_name, # 指定要使用的模型ID messages=[ # 定义消息列表,列表中的每个字典代表一个消息 {"role": "system", "content": "你是一个友好的小助手,负责解决问题."}, # 系统消息,定义助手的行为 {"role": "user", "content": "帮我讲述一个关于大灰狼的小故事"}, # 用户消息,询问时间管理的建议 ], temperature=0.8, # 控制生成文本的随机性,值越高生成的文本越随机 top_p=0.8 # 控制生成文本的多样性,值越高生成的文本越多样 ) # 打印出API的响应结果 print(response.choices[0].message.content)
-
在新建终端输入以下指令激活环境并运行
internlm2_5.py
conda activate lmdeploy python /root/internlm2_5.py
-
输出如下
-
如果遇到下面的问题
是因为安装openai包时没指定httpx包版本,httpx包进行l更新,安装了httpx 0.28.1 版本的包导致报错需要指定安装httpx包版本为0.27.2
pip install httpx==0.27.2
Function call
Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。
-
首先进入已创建好的conda环境并启动API服务器。
conda activate lmdeploy lmdeploy serve api_server \ /root/models/internlm2_5-7b-chat \ --model-format hf \ --quant-policy 0 \ --server-name 0.0.0.0 \ --server-port 23333 \ --tp 1
-
目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,选用internlm2_5-7b-chat模型封装API。
输入如下指令,新建
internlm2_5_func.py
touch /root/internlm2_5_func.py
-
将以下内容写进
internlm2_5_func.py
from openai import OpenAI def add(a: int, b: int): return a + b def mul(a: int, b: int): return a * b tools = [{ 'type': 'function', 'function': { 'name': 'add', 'description': 'Compute the sum of two numbers', 'parameters': { 'type': 'object', 'properties': { 'a': { 'type': 'int', 'description': 'A number', }, 'b': { 'type': 'int', 'description': 'A number', }, }, 'required': ['a', 'b'], }, } }, { 'type': 'function', 'function': { 'name': 'mul', 'description': 'Calculate the product of two numbers', 'parameters': { 'type': 'object', 'properties': { 'a': { 'type': 'int', 'description': 'A number', }, 'b': { 'type': 'int', 'description': 'A number', }, }, 'required': ['a', 'b'], }, } }] messages = [{'role': 'user', 'content': 'Compute (5+5)*2'}] client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1') model_name = client.models.list().data[0].id response = client.chat.completions.create( model=model_name, messages=messages, temperature=0.8, top_p=0.8, stream=False, tools=tools) print(response) func1_name = response.choices[0].message.tool_calls[0].function.name func1_args = response.choices[0].message.tool_calls[0].function.arguments func1_out = eval(f'{func1_name}(**{func1_args})') print(func1_out) messages.append({ 'role': 'assistant', 'content': response.choices[0].message.content }) messages.append({ 'role': 'environment', 'content': f'3+5={func1_out}', 'name': 'plugin' }) response = client.chat.completions.create( model=model_name, messages=messages, temperature=0.8, top_p=0.8, stream=False, tools=tools) print(response) func2_name = response.choices[0].message.tool_calls[0].function.name func2_args = response.choices[0].message.tool_calls[0].function.arguments func2_out = eval(f'{func2_name}(**{func2_args})') print(func2_out)
-
运行internlm2_5_func.py
python /root/internlm2_5_func.py
-
输出如下
可以看出InternLM2.5将输入’Compute (5+5)*2’根据提供的function拆分成了"加"和"乘"两步,第一步调用function add实现加,再于第二步调用function mul实现乘,再最终输出结果20
Tips:在检查代码逻辑时,需要确保在 tool_calls 为 None 的情况下能够正确处理
总结
愿你走过半生,归来仍是少年。