矩阵快速幂算法及相关应用(含python源码)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、快速幂算法(概述)

①快速幂就是快速算底数的n次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。

②快速幂算法的核心思想就是每一步都把指数分成两半,而相应的底数做平方运算。这样不仅能把非常大的指数给不断变小,所需要执行的循环次数也变小,而最后表示的结果却一直不会变。

③快速幂可以用位运算来实现,python实现为:

b & 1 #取b二进制的最低位,判断和1是否相同,相同返回1,否则返回0,可用于判断奇偶
b >> 1 #把b的二进制右移一位,即去掉其二进制位的最低位

二、整数快速幂(源码)

在这里插入图片描述

'''
首先,幂数会被表示为二进制系数,
其位数即为结果的项的个数,最后某项是否被乘进去需要看此项的系数是否为1,若为0则
'''
x=int(input())
n=int(input())
def quick_power(x, n):

        # 特殊情况
        if n == 0:
            return 1

        # 递归过程的最后一层
        elif n == 1:
            return x

        # 如果幂的值为偶数, 则 不 进行记录,传给下一层
        else:
            y=quick_power(x,n//2)#递下去
            print(y)
            if(n&1):#n的末位是不是1
                return (y**2)*x
            return(y**2)
print(quick_power(x, n))

在这里插入图片描述

三、矩阵快速幂(源码)

跟整数快速幂一样,但是平方需要重写一个矩阵乘法的函数,如果有取模的需要也应该在此函数中体现。此处举例模99999999,代码如下:

##矩阵快速幂算法(递归法
def matrix_mul
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值