- 博客(13)
- 收藏
- 关注
原创 AI辅助写作
lam preparing to submit my SCl paper and need help polishing each paragraph. Please help me improve the academic rigor of the paper, correct any grammatical errors, improve sentence structure to meet academic standards, and make thetext more formal when ne
2025-02-25 15:37:57
220
原创 子空间聚类
混合数据假设是从服从某一概率分布(如混合高斯分布)中抽取出的独立样本集,于是数据的分割问题就转化为一模型估计问题。代表性的工作有凝聚有损压缩[2]和随机抽样一致;
2024-03-19 20:56:11
500
1
原创 聚类的性能指标
兰德指数(Rand Index,RI)需给定实际信息类别 C,假设 K 是聚类结果,a 表示在 C与 K 中是同类别的元素对数,b 表示在 C 与 K 中是不同类别的元素对数。
2024-03-19 17:36:52
462
1
原创 基于映射的子空间学习方法
一般而言,在高维空间中,当数据样本的个数远远小于其维度时,数据样本在高维空间中会呈现稀疏性分布,即分布在高维空间中的数据样本密度极小。这会导致直接对高维数据进行分析往往效果很差,一方面是因为当数据样本密度较小时,我们很难挖掘出数据之间存在的内在结构关系;另一方面,高维数据中存在的冗余信息会对分析过程带来极大的干扰。此外,直接处理高维数据往往会导致算法具有过高的时间和空间复杂度。已有研究表明,高维数据通常都是嵌入在一个低维子空间中的。
2024-03-18 21:24:57
452
1
原创 聚类算法小结
密度聚类(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类方法,用于将数据点划分为具有相似密度的簇。它的核心思想是通过发现密度较高的数据点来形成簇,同时将低密度区域视为噪声或离群值。3. 将该核心点的邻域内的所有未被访问的数据点添加到该簇中,并递归地将它们的邻域内的数据点也添加到该簇中。2. 如果该数据点的邻域内的数据点数量大于等于最小密度阈值,则将该数据点作为核心点,并创建一个新的簇。
2023-12-27 09:21:58
491
1
原创 python中matplotlib用法小记
plt.axis('off')参考:https://blog.csdn.net/weixin_40583722/article/details/122479360
2023-06-25 18:42:54
323
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人