聚类的性能指标

本文探讨了兰德指数(RI)、标准互信息(MI)和调和平均数(V-measure)在聚类性能评估中的作用,以及高斯混合模型和投影聚类分析的应用,强调这些指标在衡量数据集内部一致性与完整性的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、兰德指数

兰德指数(Rand Index,RI)需给定实际信息类别 C,假设 K 是聚类结果,a 表示在 C
与 K 中是同类别的元素对数,b 表示在 C 与 K 中是不同类别的元素对数

2、标准互信息

互信息(Mutual Information,MI)用来衡量两个数据分布的吻合程度,也可以用来表示两个事件之间的相关性。即表示 X 与 Y 是否有关系,以及 X 与 Y 关系的强弱。

3、调和平均数

调和平均数(V-measure)是同质性(homogeneity)和完整性(completeness)两个指标的调和平均数,V-measure 取值范围为[0,1],值越大越好。其中 homogeneity、completeness两者均在 0.0 以下和 1.0 以上;但是如果样本小或聚类对象大的话,则使用 AMI 和 ARI。V-measure 计算公式如下:

[1]武政平.基于高斯混合模型和相关子空间的投影聚类分析及应用[D].太原科技大学,2020.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值