【HuggingFace Transformers】教程(1)--使用AutoClass加载预训练实例

本文是HuggingFace Transformers教程的第一部分,介绍了如何使用AutoClass从预训练实例加载分词器、图像处理器、特征提取器、处理器和模型。通过`from_pretrained()`方法,可以方便地加载不同任务的预训练模型,无论是PyTorch还是TensorFlow。此外,还强调了加载模型的安全注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识的搬运工又来啦

☆*: .。. o(≧▽≦)o .。.:*☆ 

【传送门==>原文链接:】https://huggingface.co/docs/transformers/autoclass_tutorial

 🚗🚓🚕🛺🚙🛻🚌🚐🚎🚑🚒🚚🚛🚜🚘🚔🚖🚍🚗🚓🚕🛺🚙🛻🚌🚐🚎🚑🚒🚚

由于存在许多不同的Transformer架构,因此为您的检查点(checkpoint)创建一个可能很具有挑战性。作为🤗Transformers核心理念的一部分,使库易于使用、简单和灵活,AutoClass自动推断并从给定的检查点加载正确的架构。from_pretrained()】方法允许您快速加载任何架构的预训练模型因此您无需花费时间和资源从头开始训练模型。生产此类检查点不可知代码意味着,如果您的代码适用于一个检查点,则它将适用于另一个检查点——只要它是为类似的任务进行训练的,即使架构不同。

请记住,架构是指模型的骨架,检查点是给定架构的权重。例如,BERT是一种架构,而bert-base-uncased是一个检查点。模型是一个通用术语,可以表示架构或检查点。

在本教程中,我们可以学习:

- 加载预训练的分词器。
- 加载预训练的图像处理器。
- 加载预训练的特征提取器。
- 加载预训练的处理器。
- 加载预训练模型。

AutoTokenizer

几乎每个NLP任务都始于分词器。分词器将您的输入转换为模型可以处理的格式。

使用AutoTokenizer.from_pretrained()加载分词器:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

然后按照下面所示进行分词:

sequence = "In a hole in the ground there lived a hobbit."
print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102], 
 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

AutoImageProcessor

对于视觉任务,图像处理器将图像处理成正确的输入格式。

from transformers import AutoImageProcessor

image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")

AutoFeatureExtractor

对于音频任务,特征提取器将音频信号处理成正确的输入格式。

使用AutoFeatureExtractor.from_pretrained()加载特征提取器:

from transformers import AutoFeatureExtractor

feature_extractor = AutoFeatureExtractor.from_pretrained(
    "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
)

AutoProcessor

多模态任务需要一个处理器来结合两种类型的预处理工具。例如,LayoutLMV2模型需要一个图像处理器来处理图像和一个分词器来处理文本;处理器将两者结合起来。

使用AutoProcessor.from_pretrained()加载处理器:

from transformers import AutoProcessor

processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")

AutoModel

Pytorch

最后,AutoModelFor类允许您加载给定任务的预训练模型(请参见此处以获取可用任务的完整列表)。例如,使用AutoModelForSequenceClassification.from_pretrained()加载序列分类模型:

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")

可以轻松地重复使用相同的检查点,以加载不同任务的架构:

from transformers import AutoModelForTokenClassification

model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")

对于PyTorch模型,from_pretrained()方法使用torch.load(),它在内部使用pickle,并已知存在安全问题。一般来说,永远不要加载可能来自不可信源或可能被篡改的模型。针对Hugging Face Hub上托管的公共模型,这种安全风险在一定程度上得到了缓解,因为每次提交时都会对其进行恶意软件扫描。请参阅Hub文档以了解最佳实践,例如使用GPG进行签名提交验证。

TensorFlow和Flax检查点不受影响,并且可以在PyTorch架构中使用from_pretrained方法的from_tf和from_flax参数来加载,以绕过此问题。

 通常,我们建议使用AutoTokenizer类和AutoModelFor类来加载预训练模型的实例。这将确保您每次都加载正确的架构。在下一个教程中,学习如何使用新加载的分词器、图像处理器、特征提取器和处理器对数据集进行预处理,以进行微调。

TensorFlow

最后,TFAutoModelFor类允许您加载给定任务的预训练模型(请参见此处以获取可用任务的完整列表)。例如,使用TFAutoModelForSequenceClassification.from_pretrained()加载序列分类模型:

from transformers import TFAutoModelForSequenceClassification

model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")

可以轻松地重复使用相同的检查点,以加载不同任务的架构:

from transformers import TFAutoModelForTokenClassification

model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")

通常,我们建议使用AutoTokenizer类和TFAutoModelFor类来加载预训练模型的实例。这将确保您每次都加载正确的架构。在下一个教程中,学习如何使用新加载的分词器、图像处理器、特征提取器和处理器对数据集进行预处理,以进行微调。

<think>嗯,用户的问题是关于adapter-transformers库是否从Hugging Face加载预训练模型的。首先,我需要确认adapter-transformers和Hugging Face的关系。记得adapter-transformers是基于Hugging Face的Transformers库开发的扩展,所以应该和Hugging Face的模型仓库有关联。 接下来,用户提到的引用中有说明Adapter模块的设计是为了在预训练模型基础上添加适配器,而不修改原有参数。引用2提到Adapter插入到预训练模型的每一层之后,这样可以保留原模型的能力。这说明预训练模型本身是必须加载的,而适配器是额外的模块。 然后,引用4提到Hugging Face的adapter_model.safetensors文件存储适配器的权重,而主模型参数可能还是来自Hugging Face的标准模型。因此,当使用adapter-transformers时,主模型应该还是从Hugging Face Model Hub获取的,适配器部分可能是单独保存的。 另外,用户提供的引用5中的代码示例涉及从llamafactory导入模块,这可能涉及到特定框架的使用,但核心的预训练模型加载应该还是基于Hugging Face的。需要确认adapter-transformers的文档是否明确说明其模型来源。 可能用户在使用过程中需要加载特定的预训练模型名称,比如bert-base-uncased,这些名称对应Hugging Face的模型库。当调用AutoModel.from_pretrained时,默认会从Hugging Face下载。而适配器则是通过load_adapter方法添加,可能来自本地或Hub上的适配器文件。 需要验证一下官方文档或示例代码,比如是否在加载模型时使用Hugging Face的模型标识符。例如,代码示例中是否有类似model_name = "bert-base-uncased"这样的参数,这显然指向Hugging Face的模型。 此外,引用3和5提到微调Llama模型时使用Hugging Face的方法,可能说明整个生态是围绕Hugging Face的Transformers库构建的。因此,adapter-transformers作为扩展,自然继承了这个特性,预训练模型的加载来源是Hugging Face Model Hub。 总结:adapter-transformers确实从Hugging Face加载预训练模型的主干部分,而适配器模块可能作为附加层被加载,这些适配器可以来自本地或Hub上的特定适配器文件。用户需要注意在代码中正确指定模型名称和适配器路径,确保正确加载。</think>是的,**adapter-transformers 库确实默认从 Hugging Face Model Hub 加载预训练模型的主干参数**。以下是具体说明: --- ### 1. **模型加载机制** - **主干模型来源**: adapter-transformers 是基于 Hugging Face Transformers 库开发的扩展工具,其核心模型架构(如 BERT、RoBERTa、GPT 等)的预训练权重默认通过 Hugging Face Model Hub 加载。例如: ```python from transformers import AutoModel model = AutoModel.from_pretrained("bert-base-uncased") # 从 Hugging Face 加载 BERT 模型 ``` - **适配器参数来源**: Adapter 模块的权重可以单独加载,其来源包括: - Hugging Face Hub 中已发布的适配器(例如 `AdapterHub/bert-base-uncased-pf-squad`) - 本地训练保存的适配器文件(如 `adapter_model.safetensors`)[^4] --- ### 2. **代码示例** 以下是一个典型的使用流程: ```python from adapter_transformers import AutoAdapterModel # 加载 Hugging Face 的预训练主干模型 model = AutoAdapterModel.from_pretrained("bert-base-uncased") # 从 Hugging Face Hub 加载适配器 model.load_adapter("AdapterHub/bert-base-uncased-pf-squad") # 激活适配器 model.set_active_adapters("squad") ``` --- ### 3. **关键验证点** 1. **模型名称标识**: 当使用 `from_pretrained("bert-base-uncased")` 时,模型名称与 Hugging Face Model Hub 中的标识符完全一致[^2]。 2. **文件路径关联**: adapter-transformers 会优先检查本地缓存目录(如 `~/.cache/huggingface/hub`),若未找到模型文件则自动从 Hugging Face 下载[^4]。 --- ### 4. **特殊情况说明** - **私有模型/适配器**: 如果主干模型或适配器存储在私有仓库或本地路径,需显式指定路径: ```python model = AutoAdapterModel.from_pretrained("/path/to/local_model") model.load_adapter("/path/to/local_adapter") ``` - **安全张量支持**: 适配器文件(如 `adapter_model.safetensors`)使用安全张量格式,与 Hugging Face 的生态系统兼容[^4]。 --- ### 总结 adapter-transformers预训练主干模型默认从 **Hugging Face Model Hub** 加载,适配器参数可来自 Hub 或本地路径。这种设计既保持了与 Transformers 库的一致性,又支持灵活的适配器管理[^2]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大表哥汽车人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值