R语言决策树实现

本文介绍了R语言中用于构建决策树的几种方法,包括ID3、C4.5、CART和条件推断决策树,并强调了决策树在处理非参数统计、多重共线性以及小样本多变量问题时的优势,特别适合可视化复杂的交互作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树

适用于分类型独立变量
在这里插入图片描述

决策树函数
  1. ID3:information entropy 信息熵
  2. C4.5:information gain ratio 信息增益比
  3. CART:gini index 基尼系数
  4. Conditional inference decision tree: Chi-square test 条件推断决策树(原理是卡方检验)
优势
  1. non-parametric 非参数统计
  2. multicollinearity 多重共线性
  3. small N large P 小样本多变量
  4. visualization of multiple complex interactions 可视化
library(party)
library(caret
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值