R语言:Wilcoxon符号秩检验和Hodges-Lemmann估计量

这篇博客探讨了R语言中如何运用Wilcoxon符号秩检验来研究垃圾邮件对大型公司CEO工作的影响,并通过配对数据的Wilcoxon检验分析两种镇痛药的效果差异。此外,还介绍了Walsh平均值的概念和Hodges-Lemmann估计量在评估大麦产量分布及波士顿房价数据中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单样本符号秩检验

为解决垃圾邮件对大型公司决策层的工作影响程度,某网站收集了19家大型公司的CEO和他们邮箱里每天收到的垃圾邮件件数,得到如下数据(单位:封)
310 350 370 377 389 400 415 425 440 295
325 296 250 340 298 365 375 360 385

从平均意义上看,垃圾邮件数量的中心位置是否超出320封?

spammail<-c(310,350,370,377,389,400
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值