AI
领域正从基础的 RAG
系统向更智能的 AI
智能体进化,后者能处理更复杂的任务并适应新信息。LangGraph
作为 LangChain
库的扩展,助力开发者构建具有状态管理和循环计算能力的先进 AI
系统。
LangGraph流程
LangGraph
是 LangChain
的高级库,为大型语言模型(LLM
)带来循环计算能力。它超越了 LangChain
的线性工作流,通过循环支持复杂的任务处理。
- 状态:维护计算过程中的上下文,实现基于累积数据的动态决策。
- 节点:代表计算步骤,执行特定任务,可定制以适应不同工作流。
- 边:连接节点,定义计算流程,支持条件逻辑,实现复杂工作流。
LangGraph
简化了 AI
开发,自动管理状态,保持上下文,使 AI
能智能响应变化。它让开发者专注于创新,而非技术细节,同时确保应用程序的高性能和可靠性。