LangGraph3:LangGraph基于RAG构建智能客服应用

AI 领域正从基础的 RAG 系统向更智能的 AI 智能体进化,后者能处理更复杂的任务并适应新信息。LangGraph 作为 LangChain 库的扩展,助力开发者构建具有状态管理和循环计算能力的先进 AI 系统。

LangGraph流程

LangGraphLangChain 的高级库,为大型语言模型(LLM)带来循环计算能力。它超越了 LangChain 的线性工作流,通过循环支持复杂的任务处理。

  • 状态:维护计算过程中的上下文,实现基于累积数据的动态决策。
  • 节点:代表计算步骤,执行特定任务,可定制以适应不同工作流。
  • 边:连接节点,定义计算流程,支持条件逻辑,实现复杂工作流。
    在这里插入图片描述

LangGraph 简化了 AI 开发,自动管理状态,保持上下文,使 AI 能智能响应变化。它让开发者专注于创新,而非技术细节,同时确保应用程序的高性能和可靠性。

RAG流程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值