【已解决】30系显卡深度学习,jupyter notebook内核挂掉了,需要重启

博客讲述了在使用TensorFlow进行深度学习时遇到的常见问题,如训练速度慢、Jupyter Notebook内核挂掉和GPU占用率为0。这些问题通过更新工具包版本得以解决,特别是确保了RTX3050显卡、Python、CUDA和cuDNN之间的版本兼容性。作者提供了当前使用的配置:RTX3050 + python3.8 + NVidia516.59驱动 + tensorflow2.9.0 + CUDA11.2 + cudnn8.1,并给出了各工具包的官方下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow深度学习遇到各种疑难杂症,一律先考虑是不是工具包版本不匹配

安装正确对应版本的显卡驱动,python版本,cuda版本,cudnn版本,缺一不可,对应关系如下:

显卡驱动装最新版一般都没问题。

我遇到了几个问题包括:

1、训练第一个epoch很慢,要加载好几分钟,因为我是30系卡,原生之支持cuda11及cudnn8以上,低版本需要兼容,效率很低。

2、训练时jupyter notebook内核挂掉。

3、训练时gpu占用率为0。

以上问题在安装新版tensoflow和正确版本的工具包后一次性全部消失,最后分享一下我现在的工具包配置:

RTX3050 + python3.8 64位 + NVidia 516.59版驱动 + tensorflow2.9.0 + CUDA11.2 + cudnn8.1

 顺便各个工具包官网链接附录:

cuda下载:CUDA Toolkit Archive | NVIDIA Developer

cudnn下载:cuDNN Archive | NVIDIA Developer

n卡驱动下载:官方 GeForce 驱动程序 | NVIDIA

python下载:Download Python | Python.org

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值