K 近邻算法 API

该博客介绍了如何使用sklearn库在鸢尾花数据集上实现KNN(K近邻)分类。首先加载鸢尾花数据,然后进行训练集和测试集划分,接着使用StandardScaler进行特征缩放,最后训练KNeighborsClassifier并进行预测,评估模型的预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier


#1.获取数据

# 1.1 小数据集获取
iris = load_iris()

# 1.2 大数据集获取
# news = fetch_20newsgroups()

# #2.数据基本处理
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
# #3.特征工程-特征预处理
#
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)

#4.机器学习-KNN
estimator = KNeighborsClassifier(n_neighbors=5)
estimator.fit(x_train,y_train)

#5.模型评估
y_pre =estimator.predict(x_test)
print("预测值是:\n", y_pre)
print("预测值和真实值的对比是:\n", y_pre==y_test)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值