from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
#1.获取数据
# 1.1 小数据集获取
iris = load_iris()
# 1.2 大数据集获取
# news = fetch_20newsgroups()
# #2.数据基本处理
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
# #3.特征工程-特征预处理
#
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
#4.机器学习-KNN
estimator = KNeighborsClassifier(n_neighbors=5)
estimator.fit(x_train,y_train)
#5.模型评估
y_pre =estimator.predict(x_test)
print("预测值是:\n", y_pre)
print("预测值和真实值的对比是:\n", y_pre==y_test)
K 近邻算法 API
最新推荐文章于 2025-08-24 11:06:10 发布