日常刷题11

题目:报数游戏是这样的:有n个人围成一圈,按顺序从1到n编好号。从第一个人开始报数,报到m(<n)的人退出圈子;下一个人从1开始报数,报到m的人退出圈子。如此下去,直到留下最后一个人。
本题要求编写函数,给出每个人的退出顺序编号。
函数接口定义:
void CountOff( int n, int m, int out[] );
其中n是初始人数;m是游戏规定的退出位次(保证为小于n的正整数)。函数CountOff将每个人的退出顺序编号存在数组out[]中。
输入样例:
11 3
输出样例:
4 10 1 7 5 2 11 9 3 6 8
思路:利用下标模拟循环数组,遇到满足条件的数按顺序存入1,2,3……最后输出即可。这道题本质上是约瑟夫环的应用。约瑟夫环运作如下:
1、一群人围在一起坐成环状
2、从某个编号开始报数
3、数到某个数(如:M)的时候,此人出列,下一个人重新报数
4、一直循环,直到所有人出列 ,约瑟夫环结束。
而这题只是将出列变成出列顺序。
代码:

#include <stdio.h>
#define MAXN 20

void CountOff( int n, int m, int out[] );

int main()
{
    int out[MAXN], n, m;
    int i;

    scanf("%d %d", &n, &m);
    CountOff( n, m, out );   
    for ( i = 0; i < n; i++ )
        printf("%d ", out[i]);
    printf("\n");

    return 0;
}
/*以上是题目提供的裁判代码*/
void CountOff( int n, int m, int out[] )
{
	int i=0,j=1,k;
	int num[MAXN];//定义状态数组,表示是否被淘汰
	for(k=0;k<n;k++)
		out[k]=0;
	for(k=0;k<n;k++)//初始化为1,表示全部没有淘汰
		num[k]=1;
	k=1;//编号
	i=0;
	j=0;
	while(k<=n)
	{
		if(num[i]!=0)
			j++;
		if(j==m)//表示1,2,3……m的循环
		{
			out[i]=k;
			j=0;
			num[i]=0;//淘汰,则置0
			k++;
		}
		i++;
		if(i==n)//重新遍历数组
			i=0;
	}
}
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值