54循环神经网络概述
1.潜变量自回归模型
使用潜变量h_t总结过去信息
2.循环神经网络概述
循环神经网络(recurrent neural network
,简称RNN
)源自于1982年由Saratha Sathasivam
提出的霍普菲尔德网络。循环神经网络,是指在全连接神经网络的基础上增加了前后时序上的关系,可以更好地处理比如机器翻译等的与时序相关的问题。
循环神经网络是一种对序列数据有较强的处理能力的网络。在网络模型中不同部分进行权值共享使得模型可以扩展到不同样式的样本,比如CNN网络中一个确定好的卷积核模板,几乎可以处理任何大小的图片。将图片中分成多个区域,使用同样的卷积核对每一个区域进行处理,最后可以获得非常好的处理结果。同样的,循环网络使用类似的模块(形式上相似)对整个序列进行处理,可以将很长的序列进行泛化,得到需要的结果。
RNN
的目的就是用来处理序列数据的。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题都无能无力。比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
相比于词袋模型和前馈神经网络模型,RNN
可以考虑到词的先后顺序对预测的影响,RNN
包括三个部分: