构造散列表的方法

博客主要介绍了哈希算法中处理冲突的方法,包括拉链法和开放定址法(含4种),并给出使用开放定址法的双散列法处理冲突的题目,聚焦于哈希算法冲突处理相关信息技术内容。

介绍

在这里插入图片描述

处理冲突的方法

1.拉链法
2.开放定址法(4种:
在这里插入图片描述
在这里插入图片描述

题目

使用开放定址法双散列法处理冲突
在这里插入图片描述
在这里插入图片描述

<think>好的,我现在需要回答用户关于如何使用数字分析法构建哈希表的问题。首先,我得回忆一下数字分析法的定义和步骤。根据之前学过的知识,数字分析法属于哈希函数构造方法的一种,通常用于处理关键字是数字的情况。它的核心思想是分析关键字的各个位数分布情况,选取分布较均匀的几位作为哈希地址。这样可以减少冲突的可能性。 接下来,我需要确定数字分析法的具体步骤。根据引用[3]和[4],哈希函数的设计目的是为了将键均匀地映射到哈希表中,而数字分析法则是通过分析关键字的数字分布来选择最合适的位。步骤应该包括:收集所有关键字、将每个关键字转换为相同位数的数字、分析每一位的分布情况、选择分布最均匀的几位、组合这些位形成哈希地址。 然后,我需要找一个合适的例子来说明这个过程。比如用户提到的引用[2]中的例子,关键字是28、49、18,但哈希函数用的是取模法。不过这里需要用数字分析法,所以应该选择不同的例子。例如,假设有一组学号:20230101、20230215、20230322、20230418,这些学号可能有一定的规律,比如前四位是年份和学期,后四位是序列号。通过分析每一位数字的变化情况,发现后四位中的某些位变化较大,适合作为哈希地址。 接下来需要详细描述分析过程。例如,将每个学号分解为各个位数,统计每一位上数字的分布。如果发现中间几位(如第5到第7位)变化比较均匀,那么可以选取这几位组合起来作为哈希地址。例如,学号20230101分解为2,0,2,3,0,1,0,1,可能中间的几位0,1,0变化较小,而后面几位变化较大,这时候可能需要选择不同的位。 另外,需要考虑哈希表的大小,根据选择的位数确定哈希表的长度。如果选择三位数字,那么哈希表的大小可以是1000,但实际应用中可能根据需求调整,比如取后三位并对表长取模。 然后,我需要确保例子中的步骤符合数字分析法的要求,并且能够清晰地展示如何减少冲突。例如,选取分布均匀的位数,使得不同的关键字映射到不同的位置,减少冲突的可能性。 最后,要检查是否有遗漏的步骤或可能的错误,比如是否所有关键字都转换为相同位数,是否分析到位数的分布情况,以及哈希地址的组合是否正确。同时,需要引用相关的参考资料,如引用[3]和[4]中提到的哈希函数和冲突解决方法,确保回答的准确性。</think>### 数字分析法构建哈希表的方法 #### 核心原理 数字分析法是哈希函数构造方法之一,**适用于关键字为数字且位数固定**的场景。其核心步骤为: 1. **收集所有关键字**,确保位数一致(不足则补零) 2. **逐位统计数字分布**,分析每位数字的均匀性 3. **选择分布最均匀的若干位**,组合形成哈希地址[^3][^4] #### 具体步骤与示例 **示例场景**:假设需要存储以下学号为关键字的记录(表长为100): ``` 学号:20230115, 20230228, 20230307, 20230412, 20230519 ``` **步骤分解**: 1. **统一位数**:所有学号已为8位数字 ``` 2 0 2 3 0 1 1 5 2 0 2 3 0 2 2 8 2 0 2 3 0 3 0 7 2 0 2 3 0 4 1 2 2 0 2 3 0 5 1 9 ``` 2. **逐位分析分布**: - 第1-4位:`2023`(完全相同) - 第5位:全为`0` - 第6位:`1,2,3,4,5`(均匀分布) - 第7-8位:后两位随机变化 3. **选择有效位**: - **舍弃前5位**(无区分度) - **选取第6位+后两位**(即组合第6、7、8位) - 哈希函数:$Hash(key) = (d_6 \times 100 + d_7 \times 10 + d_8) \% 100$ 4. **计算结果**: | 学号 | 哈希地址计算 | 存储位置 | |------------|-------------------------|----------| | 20230115 | (1×100 +1×10+5)=115 →15 | 15 | | 20230228 | (2×100 +2×10+8)=228 →28 | 28 | | 20230307 | (3×100 +0×10+7)=307 →07 | 07 | | 20230412 | (4×100 +1×10+2)=412 →12 | 12 | | 20230519 | (5×100 +1×10+9)=519 →19 | 19 | #### 注意事项 1. **动态调整**:若新增数据导致分布变化,需重新分析 2. **补零规则**:如出现`20230605→05`需保持三位数,应取`605` 3. **冲突处理**:若仍发生冲突,需结合开放定址法或链地址法[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值