01、Java算法数组【704. 二分查找,27. 移除元素】

本文详细介绍了Java中数组的理论基础,包括数组索引特点,然后通过实例演示了二分查找算法(左闭右闭和左闭右开两种情况),以及如何在原地移除数组中特定元素的两种方法:暴力解法和双指针法。最后提供了相关技术面试题的推荐链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数组理论基础

数组是存放在连续内存空间上的相同类型数据的集合。

数组可以方便的通过下标索引的方式获取到下标下对应的数据。

举一个字符数组的例子如图:

需要两点注意的是

  • 数组下标都是从0开始的。
  • 数组内存空间的地址是连续

正是因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。

例如删除下标为3的元素,需要对下标为3的元素后面的所有元素都要做移动操作,如图所示:

 二、704. 二分查找力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台备战技术面试?力扣提供海量技术面试资源,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。icon-default.png?t=N7T8https://leetcode.cn/problems/binary-search/

例题:

           给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9     
输出: 4       
解释: 9 出现在 nums 中并且下标为 4     

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2     
输出: -1        
解释: 2 不存在 nums 中因此返回 -1   

提示:

  • 你可以假设 nums 中的所有元素是不重复的。
  • n 将在 [1, 10000] 之间。
  • nums 的每个元素都将在 [-9999, 9999] 之间。

算法公开课:手把手带你撕出正确的二分法 | 二分查找法 | 二分搜索法 | LeetCode:704. 二分查找_哔哩哔哩_bilibili

第一种写法:定义在左闭右闭的区间里[left, right] (这个非常重要

区间定义二分法的代码如何写:首先定义target[left, right]区间!

因此有这两点:①while (left <= right) 要使用 <=因为:left == right是有意义的,所以:使用 <=

                         ②if (nums[middle] > targetright 要赋值为 middle - 1因为:当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1

例如:在数组[1,2,3,4,7,9,10]中查找元素2,如图所示:

public class day01 {
    public static void main(String[] args) {
        int nums[] = {1, 3, 7, 9};
        int target = 7;
        System.out.println(search(nums, target));
    }
    //1.左闭右闭的情况
    public static int search(int nums[], int target) {
        //避免当target 小于nums[0] ,nums[nums.lenth-1]时多循环运算
        if (target < nums[0] || target > nums[nums.length - 1]) {
            return -1;// 这里呢进行一个排除 如果说目标的值小于最小,大于最大,那就直接退出
        }
        int left = 0;
        int right = nums.length - 1;// 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] == target)
                return middle;// 数组中找到目标值,直接返回下标
            else if (nums[middle] < target)
                left = middle + 1;// target 在右区间,所以[middle + 1, right]
            else if (nums[middle] > target)
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
        }
        return -1;
    }
}

第二种写法:左闭右开的区间里[left, right) 那么二分法的边界处理方式则截然不同。

有如这两点:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为:当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,   所以:right更新为middle,即:下一个查询区间不会去比较nums[middle]

在数组:1,2,3,4,7,9,10中查找元素2,如图所示:(注意和方法一的区别

 

    //2.左闭右开的情况
    public static int search2(int nums[], int target) {
        //避免当target 小于nums[0] ,nums[nums.lenth-1]时多循环运算
        if (target < nums[0] || target > nums[nums.length - 1]) {
            return -1;// 这里呢进行一个排除 如果说目标的值小于最小,大于最大,那就直接退出
        }
        int left = 0;
        int right = nums.length - 1;// 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target)
                return middle; // target 在左区间,在[left, middle)中
            else if (nums[middle] < target)
                left = middle + 1;// target 在右区间,在[middle + 1, right)中
            else if (nums[middle] == target)
                return middle; // 数组中找到目标值,直接返回下标
        }
        return -1;
    }

704、总结:

总体代码:

package com.chapter.one.shuzu;

public class day01 {
    public static void main(String[] args) {
        int nums[] = {1, 3, 7, 9};
        int target = 7;
        System.out.println(search2(nums, target));
    }

    //1.左闭右闭的情况
    public static int search(int nums[], int target) {
        //避免当target 小于nums[0] ,nums[nums.lenth-1]时多循环运算
        if (target < nums[0] || target > nums[nums.length - 1]) {
            return -1;// 这里呢进行一个排除 如果说目标的值小于最小,大于最大,那就直接退出
        }
        int left = 0;
        int right = nums.length - 1;// 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] == target)
                return middle;// 数组中找到目标值,直接返回下标
            else if (nums[middle] < target)
                left = middle + 1;// target 在右区间,所以[middle + 1, right]
            else if (nums[middle] > target)
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
        }
        return -1;
    }

    //2.左闭右开的情况
    public static int search2(int nums[], int target) {
        //避免当target 小于nums[0] ,nums[nums.lenth-1]时多循环运算
        if (target < nums[0] || target > nums[nums.length - 1]) {
            return -1;// 这里呢进行一个排除 如果说目标的值小于最小,大于最大,那就直接退出
        }
        int left = 0;
        int right = nums.length - 1;// 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target)
                return middle; // target 在左区间,在[left, middle)中
            else if (nums[middle] < target)
                left = middle + 1;// target 在右区间,在[middle + 1, right)中
            else if (nums[middle] == target)
                return middle; // 数组中找到目标值,直接返回下标
        }
        return -1;
    }
}

Debug测试解析:

①对区间的定义要理解清楚;

②在循环中没有始终坚持根据查找区间的定义来做边界处理;

③区间的定义就是不变量,那么在循环中坚持根据查找区间的定义来做边界处理,就是循环不变量规则;

总结本篇:两种常见的区间定义,给出了两种二分法的写法,每一个边界为什么这么处理,都根据区间的定义做了详细介绍。

------------------希望可以帮助到更多学习Java的小伙伴,不懂或者有疑惑的可以随时来问我哦!

                                                                                                        -------------@程序员~小鱼儿

三、移除元素 

力扣题目链接备战技术面试?力扣提供海量技术面试资源,帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。icon-default.png?t=N7T8https://leetcode.cn/problems/remove-element/

例题:

        给你一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,并返回移除后数组的新长度。

不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。

 元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。

示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。

示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。

不需要考虑数组中超出新长度后面的元素。

思路:

有的同学可能说了,多余的元素,删掉不就得了。

要知道数组的元素在内存地址中是连续的,不能单独删除数组中的某个元素,只能覆盖。

数组的基础知识可以看以上的(数组理论基础

暴力解法:

就是两层for循环,一个for循环遍历数组元素 ,第二个for循环更新数组

删除过程如下:

很明显暴力解法的时间复杂度是O(n^2),这道题目暴力解法在leetcode上是可以过的。

Java 代码如下:

/**
 * 移除元素
 */
public class day01_remove {
    public static void main(String[] args) {
        int nums[] = {1, 3, 5, 3, 3, 9};
        int val = 3;
        System.out.println(remove(nums, val));
    }
    //暴力解法
    public static int remove(int nums[], int val) {
        int size = nums.length;
        for (int i = 0; i < size; i++) {//-------------------------------遍历数组元素
            if (nums[i] == val) {// 发现需要移除的元素,就将数组集体向前移动一位
                for (int j = i + 1; j < size; j++) {//----------------------更新数组。
                    nums[j - 1] = nums[j];
                }
                i--;// 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
                size--; // 此时数组的大小-1
            }
        }
        return size;
    }
}

双指针法: 

双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。 

定义快慢指针

  • 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
  • 慢指针:指向更新 新数组下标的位置

快慢指针究竟都是什么含义?所以一定要明确含义,后面的思路就更容易理解了。

删除过程如下:


要理解:在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。

 Java------本题代码如下:

    //双指针解法----慢指针
    public static int remove2(int nums[], int val) {
        //慢指针
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.length; fastIndex++) {
            if (nums[fastIndex] != val){
                nums[slowIndex] = nums[fastIndex];
                slowIndex++;
            }
        }
        return slowIndex;
    }

 

    //相向双指针法
    public static int remove3(int nums[], int val) {
        int left = 0;//最左边
        int right = nums.length - 1;//最右边的
        while (right >= 0 && nums[right] == val) right--;//将right移到从右数第一个值不为val的位置
        while (left <= right) {
            if (nums[left] == val) {//left位置的元素需要移除
                nums[left] = nums[right];
                right--;//将right位置的元素移到left(覆盖),right位置移除
            }
            left++;
            while (right >= 0 && nums[right] == val) right--;
        }
        return left;
    }
package com.chapter.one.shuzu;


/**
 * 移除元素
 */
public class day01_remove {
    public static void main(String[] args) {
        int nums[] = {1, 3, 5, 5, 4, 9};
        int val = 5;
        System.out.println(remove2(nums, val));
    }

    //暴力解法
    public static int remove(int nums[], int val) {
        int size = nums.length;
        for (int i = 0; i < size; i++) {//-------------------------------遍历数组元素
            if (nums[i] == val) {// 发现需要移除的元素,就将数组集体向前移动一位
                for (int j = i + 1; j < size; j++) {//----------------------更新数组。
                    nums[j - 1] = nums[j];
                }
                i--;// 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
                size--; // 此时数组的大小-1
            }
        }
        return size;
    }

    //双指针解法----快慢指针
    public static int remove2(int nums[], int val) {
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.length; fastIndex++) {
            if (nums[fastIndex] != val) {
                nums[slowIndex] = nums[fastIndex];
                slowIndex++;
            }
        }
        return slowIndex;
    }

    //相向双指针法
    public static int remove3(int nums[], int val) {
        int left = 0;//最左边
        int right = nums.length - 1;//最右边的
        while (right >= 0 && nums[right] == val) right--;//将right移到从右数第一个值不为val的位置
        while (left <= right) {
            if (nums[left] == val) {//left位置的元素需要移除
                nums[left] = nums[right];
                right--;//将right位置的元素移到left(覆盖),right位置移除
            }
            left++;
            while (right >= 0 && nums[right] == val) right--;
        }
        return left;
    }
}

 

相关题目推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值