常规思路(试除法):求m、n两个正整数的最大公约数,设t为m、n中最小的数,则最大公约数是从t、t-1、t-2、...... 2、1中依次寻找。
#include<stdio.h>
int main()
{
int n = 0, m = 0, t = 0, i = 0;//t用于存储n和m中较小的值
printf("输入两个正整数:");
scanf("%d%d",&n,&m);
t = m > n ? m : n;
while (1)
{
if (n % i == 0 && m % i == 0)//m、n一定会有最大公约数,最小为1.
{
printf("最大公约数为%d", i);
break;
}
i--;
}
return 0;
}
辗转相除法:假设m为较大值,n为较小值。
1)如果m%n==0:则n是最大公约数。
2)如果m%n==X1:则应该从1-X1之间寻找最大公约数。
n%X1==X2:则应该从1-X2之间寻找最大公约数
......
(依次取余下去,直到取余的结果为0,取余数即为最大公约数,说人话就是上两行中如果X2为0,那么X1就是最大公约数)
X2为0表示X1能整除n。X1能整除n,说明n可以被分成多个X1,而m又可以被分成 (多个n)+X1,那么就可以得知X1可以整除m。
本质上也是试除法,但是辗转相除法可以跳过一些一定不是最大公约数的数进行检验。
#include<stdio.h>
int main()
{
int n, m, i;
printf("输入两个正整数:");
scanf("%d%d", &n, &m);
while (n)//n输入非0一定会进入循环
{
i = m % n;//i等于0,说明n就是最大公约数,n下一步会赋值给m用于输出结果,i下一步会赋值给n用于结束循环。
m = n;
n = i;
}
printf("最大公约数为%d", m);
return 0;
}
补充知识点:两个正整数的乘积=最大公约数*最小公倍数