目录
一、背景和目标
- 借助患者的病理信息,挖掘患者的症状于中医证型之间的关联关系。
- 对截断治疗提供依据,挖掘潜性证素。
二、方法步骤
- 问卷调查,收集整理数据。
- 对数据进行预处理,包括数据清洗、属性规约、数据变换,形成建模数据。
- 对预处理后的建模数据,采用“关联规则算法”,调整模型输入参数,获取各中医证素于乳腺癌TNM分期之间的关系。
- 结合实际业务,对模型结果进行分析,且将模型结果应用到实际业务中,最后输出关联规则结果。
三、过程
3.1 数据获取
- 拟定调查问卷并形成原始指标表。
- 定义纳入标准与排除标准。
- 将收集回来的问卷整理成原始数据。
3.2 数据预处理
3.21 数据清洗
根据“问卷有效性条件”(纳入标准、排除标准)筛选后,将有效问卷整理成原始数据。
3.22 属性规约
为了更为有效地进行挖掘,将冗余属性和与挖掘无关的属性删除。最后选择其中6种证型得分TNM分期的属性值构成数据集。
3.23 数据变换
(1)属性构造
为了更好的反映证素分布的特征,采用证型系数代替具体的单证型得分。
公式:证型系数=该证型得分/该证型总分
处理后数据形式如下:
(2)数据离散化
因为Apriori关联规则算法无法处理连续型数值变量,为了将原始数据格式转换成合适的建模格式,需要对数据进行离散化。这里采用聚类算法对各个证型系数进行离散化处理,将每个属性聚成4类。
#-*- coding: utf-8 -*-
'''
聚类离散化,最后的result的格式为:
1 2 3 4
A 0 0.178698 0.257724 0.351843
An 240 356.000000 281.000000 53.000000
即(0, 0.178698]有240个,(0.178698, 0.257724]有356个,依此类推。
'''
from __future__ import print_function
import pandas as pd
from sklearn.cluster import KMeans #导入K均值聚类算法
datafile = '.../data/data.xls' #待聚类的数据文件
processedfile = '.../tmp/data_processed.xls' #数据处理后文件
typelabel ={u'肝气郁结证型系数':'A', u'热毒蕴结证型系数':'B', u'冲任失调证型系数':'C', u'气血两虚证型系数':'D', u'脾胃虚弱证型系数':'E', u'肝肾阴虚证型系数':'F'}