自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 《MODIS 蒸散发 (ET) 数据月度合成实战:权重计算、统计分析与 Python 可视化》(MOD16A2)

②计算过滤后的值的均值、范围,验证其乘以缩放因子(0.1)后是否在合理区间(30~80mm/8 天)。计算日期重叠(解决 8 天数据跨月问题,如某数据覆盖 5 月最后 2 天和 6 月前 6 天);通过统计过滤后的值分布,确认无效值(如 32767)和异常值已被正确处理,保证后续计算的可靠性。(4)用权重总和归一化结果(避免重叠区域重复计算),过滤异常值(0~300mm 外)。(2)对每个 8 天数据,计算其与当月的重叠天数(权重 = 重叠天数 / 8);②筛选 2024 年数据,排除其他年份;

2025-07-14 15:30:17 864

原创 《HDF 转 TIFF + 质量掩膜 + 空间裁剪:淄博市 ET 数据预处理全解析》(MOD16A2)

本文介绍了MODIS蒸散发(ET)数据预处理流程,针对淄博市研究区进行数据处理。流程包含四个关键步骤:1) HDF格式转换,将原始数据转为TIFF格式;2) 质量控制,利用QC数据过滤无效值;3) 空间裁剪,基于淄博市边界提取研究区数据;4) 数据合并,拼接分区为完整市域数据。预处理过程采用Python的GDAL和rasterio库,实现了从原始数据到标准化栅格数据的转换,确保数据质量可靠、范围精确。该流程体现了遥感数据预处理的典型方法,为后续ET分析提供了高质量基础数据。

2025-07-14 11:09:58 832

2024 年淄博市 MODIS 蒸散发(ET)数据的全流程处理与分析

1、将原始 HDF 数据转为 TIFF 格式并进行质量控制(基于 QC 数据过滤无效值); 2、按淄博市边界裁剪数据并合并为市域范围; 3、按月份分组,通过时间权重计算月度累计 ET; 4、生成月度 / 年度统计结果(均值、最大值等),并以 Excel 和可视化图表(空间分布、时间趋势)输出。

2025-07-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除