1、Lee滤波
Lee滤波是选择一定长度的窗口作为局部区域,利用图像局部统计特性进行SAR图像斑点滤波的典型方法。其是基于完全发育的斑点噪声模型。(图像上斑点处于均匀区域,且斑点噪声与图像信号不相关)
根据试验研究表明完全发育的相干噪声是一种乘性噪声,即有(k,l)是图像像素的坐标,I(k,l)是实际得到的图强强度(含有噪声),x(k,l)是一个平稳随机过程,描述了原始信号,v(k,l)即为相干斑噪声,它是一个均值为1,方差为的平稳白噪声。
乘性相干斑模型如下:
噪声抑制的两个关键环节:一是建立真实后向散射系数的估计机制,二是制定同质区域像素样本的选择方案。计算方法如下:
2、Refine-Lee滤波
由于Lee滤波器存在缺陷,即对靠近边缘或点目标的同质区域像素滤波不够充分,之后,Lee又提出了一种基于边缘检测的自适应滤波算法,通过重新定义中心像素的邻域来提高估计的准确性。通常使用7*7的滑动窗口,具体处理如下:
Step1:将7×7的滑窗分为九个子区间,区间之间有重叠,每个子区间大小为3×3。
Step2:计算各子窗的均值。用这个均值构造一个3×3的矩阵M,来估计局域窗中边缘的方向,将3×3梯度模板应用到均值矩阵,梯度绝对值最大的方向被认为是边缘的方向。这里只需要用水平、垂直、45度和135度四个方向的梯度模板,相反方向互为相反数。
3、流程图
图1 Lee滤波
图2 Refine滤波