Lee滤波和Refine-Lee滤波

本文介绍了Lee滤波的基本原理,针对边缘区域处理的不足,阐述了Refine-Lee滤波器的自适应边缘检测方法。通过7x7窗口划分和梯度模板,提升了斑点噪声抑制的精度。流程图展示了两种滤波器的对比。

1、Lee滤波

Lee滤波是选择一定长度的窗口作为局部区域,利用图像局部统计特性进行SAR图像斑点滤波的典型方法。其是基于完全发育的斑点噪声模型。(图像上斑点处于均匀区域,且斑点噪声与图像信号不相关)

根据试验研究表明完全发育的相干噪声是一种乘性噪声,即有(k,l)是图像像素的坐标,I(k,l)是实际得到的图强强度(含有噪声),x(k,l)是一个平稳随机过程,描述了原始信号,v(k,l)即为相干斑噪声,它是一个均值为1,方差为的平稳白噪声。

乘性相干斑模型如下:

噪声抑制的两个关键环节:一是建立真实后向散射系数的估计机制,二是制定同质区域像素样本的选择方案。计算方法如下:

 

2、Refine-Lee滤波

由于Lee滤波器存在缺陷,即对靠近边缘或点目标的同质区域像素滤波不够充分,之后,Lee又提出了一种基于边缘检测的自适应滤波算法,通过重新定义中心像素的邻域来提高估计的准确性。通常使用7*7的滑动窗口,具体处理如下:

Step1:将7×7的滑窗分为九个子区间,区间之间有重叠,每个子区间大小为3×3。

Step2:计算各子窗的均值。用这个均值构造一个3×3的矩阵M,来估计局域窗中边缘的方向将3×3梯度模板应用到均值矩阵,梯度绝对值最大的方向被认为是边缘的方向。这里只需要用水平、垂直、45度和135度四个方向的梯度模板,相反方向互为相反数。

 

3、流程图

图1 Lee滤波

 

图2 Refine滤波

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值