本次内容包括回归及结构方程模型概述及数据探索;R和Rstudio简介及入门和作图基础;R语言数据清洗-tidyverse包;贝叶斯回归与混合效应模型;贝叶斯计数数据分析、贝叶斯空间、时间及系统发育相关数据分析;贝叶斯非线性数据分析;贝叶斯结构方程模型及统计结果绘图等。
第一章 夯实基础
1.复杂数据回归(混合效应)模型的选择策略
①科学研究中数据及其复杂性
②回归分析历史、理论基础
③回归分析基本假设和常见问题
④复杂数据回归模型选择策略
2.结构方程模型(SEM)生态领域应用简介
①SEM的定义、生态学领域应用及历史回顾
②SEM的基本结构
③SEM的估计方法
④SEM的路径规则
⑤SEM路径参数的含义
⑥SEM分析样本量及模型可识别规则
⑦SEM构建基本流程
3.如何通过数据探索避免常见统计问题
①数据缺失(missing value)②零值(zero trouble)③奇异值/离群值(outliers)④异质性(heterogeneity)⑤数据分布正态性(normality)⑥响应变量与预测变量间关系(relationships)⑦交互作用项(interaction)⑧共线性(collinearity)⑨样本独立性(independence)
第二章 R和Rstudio入门和绘图(含ggplot)
①R及Rstudio介绍:背景、软件及程序包安装、基本设置
②R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取
③R语言数据文件读取、整理、结果存储
④R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储
第三章 R语言数据清洗-tidyverse包应用
①tidyvese简介:tidyr、dplyr、readr、%>%
②文件操作:不同格式文件读取、多文件同时读取
③数据筛选:行筛选、列筛选、条件筛选(字符操作)
④数据生成:数据合并、数据拆分、新数据生成(字符操作)
⑤长宽数据转换、空值(NA)等填充及删除、分组、排序及汇总
第四章 贝叶斯回归模型-回归、方差及协防差分析
①贝叶斯统计简介
②贝叶斯回归分析建模、模型诊断、交叉验证、预测和绘图
③贝叶斯回归分析多预测变量:回归、方差、协方差及交互作用
④贝叶斯回归模型的过度拟合、共线性、分类变量等
第五章 贝叶斯混合效应模型-数据分层和嵌套
①混合效应模型基本原理
②贝叶斯效混合应模型建模步骤及实现
③贝叶斯的预测和模型诊断
④贝叶斯混合效应模型的多重比较
⑤贝叶斯混合效应模型的方差分解
第六章 贝叶斯计数数据分析
①贝叶斯0,1数据分析:二项分布及伯努利分布
②贝叶斯泊松分布数据分析
③贝叶斯过度离散数据分析
④贝叶斯零膨胀数据分析
⑤贝叶斯截断数据分析
第七章 贝叶斯相关数据分析:时间、空间、系统发育相关数据
①贝叶斯回归模型方差异质性问题及解决途径
②贝叶斯时间自相关分析:线性及混合效应模型及时间自相关+方差异质性
③贝叶斯空间自相关分析:空间距离矩阵、空间邻接关系及矩阵
④贝叶斯系统发育相关分析
第八章 贝叶斯非线性关系数据分析:广义可加(混合)模型(BGAM/BGAMM)和非线性(混合)(BNLM/BNLMM)模型
①“线性”回归的含义及非线性关系的判定
②贝叶斯广义可加(混合效应)(GAM/GAMM)模型
③贝叶斯非线性(混合效应)(NLM/NLMM)模型
第九章 贝叶斯结构方程模型(BSEM)
①R语言贝叶斯SEM实现程序包blavaan和brms介绍
②案例:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan&brms)
③案例:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)
④案例:生物地理历史因素对北半球森林的初级生产力的影响(brms)
第十章 超越贝叶斯统计:因果推断
①因果推断概述-因果关系之梯
②因果推断实现(DAG)
③贝叶斯回归VS贝叶斯网络-揭开因果迷雾
第十一章 贝叶斯统计结果绘图
①贝叶斯分析结果数据提取和绘图准备
②贝叶斯回归模型结果图:散点图、预测图、箱线图、柱状图、提琴图、密度图及峰峦图等
③贝叶斯结构方程模型结果图表达
★ 点 击 下 方 关 注,获取海量教程和资源!
↓↓↓