亚马逊云科技-生成式AI之旅与PGA巡回赛GenAI
关键字: [yt, Bedrock, Generative Ai Commentary, Personalized Fan Experiences, Player Performance Analysis, Historical Context Insights, Experimentation And Education]
本文字数: 400, 阅读完需: 2 分钟
导读
斯科特·萨瓦尔是美国职业高尔夫球巡回赛(PGA Tour)数字平台和广播技术的负责人。他阐述了该组织如何利用生成式人工智能(generative AI)为高尔夫球迷量身定制个性化体验。具体而言,他们正在努力为球迷喜爱的球员生成解说,提供有关球路的背景信息,例如完成一个推杆的可能性或一个球路在比赛中的重要性。PGA Tour正在使用亚马逊云科技(亚马逊云科技)工具,如Bedrock和Kendra,来准备他们的数据和内容、评估模型,并确保准确性和正确性。他们还在探索如何通过球员代理帮助球员了解自己的比赛表现,并利用历史数据为工作人员提供见解。萨瓦尔强调在采用生成式人工智能时,实验和教育的重要性。
演讲精华
以下是小编为您整理的本次演讲的精华,共100字,阅读时间大约是0分钟。
在这个令人振奋的时代,亚马逊云科技(亚马逊云科技)的生成式人工智能(GenAI)技术正为各行各业带来前所未有的创新体验。其中,职业高尔夫球巡回赛(PGA Tour)就是一个引人入胜的范例,展现了GenAI如何为球迷和球员带来全新的体验。
斯科特·萨瓦尔是PGA Tour的数字平台和广播技术总监,在这个职位上已经近19年了。作为一个负责举办遍布世界各地的高尔夫球赛事的组织,PGA Tour每年要承办约35场赛事,再加上其他四个分支赛事,有时一周会有5到6场赛事同时进行。这对于PGA Tour来说是一个繁忙的时期。
萨瓦尔先生见证了PGA Tour从2005年只有一个网站,到现在运用生成式AI的整个发展历程。他分享说,PGA Tour已经在使用人工智能和机器学习至少10年了,这些技术在内容创作和比分记录等方面发挥着重要作用。例如,PGA Tour的射击长度系统就一直在使用机器学习来捕捉所有球员的球飞行轨迹和比分数据。在过去8年里,PGA Tour还使用机器学习工具来剪辑赛事集锦,使集锦数量增加了三倍。此外,PGA Tour还利用机器学习为每位球员生成赛后报道和统计数据,因为一场典型的PGA Tour赛事会有80到154名球员参赛,人工生成这些内容是无法做到的。
在过去24个月里,PGA Tour对生成式AI越来越感兴趣,因为它们看到了这项技术为球迷创造全新体验、为工作人员提高效率的潜力。萨瓦尔先生表示,PGA Tour的目标是为球员、赛事和球迷提供更好的服务,让球迷能够更贴近球员和知名球场,而生成式AI将是实现这一目标的关键一步。
目前,PGA Tour正在使用生成式AI为球迷创造个性化体验,解决的主要挑战是如何为不同球迷量身定制内容体验。例如,它们正在开发一系列工具,可以为球迷生成关于他们最喜欢球员的实时解说,包括该球员的比赛数据、过去在同一球场的表现等信息。当罗里·麦克罗伊有一个10英尺的推杆机会时,生成式AI不仅会告诉你他在这种距离的入球率是多少,还会展示他过去在同一个洞口、同一场比赛中是否曾经命中过这种推杆,以及如果命中,对于比赛结果会产生怎样的影响。这些工具预计将在今年晚些时候推出。
除了文字解说,PGA Tour还希望通过生成式AI提供多模态响应,包括视频内容,展示球员过去在某一具体情况下的表现。它们甚至希望能够预测一个特定的射门对比赛结果的重要性。例如,当罗里·麦克罗伊有一个距离洞口10英尺的推杆机会时,生成式AI系统会分析他在这种距离的入球概率,以及他过去在同一洞口、同一场比赛中是否曾经命中过类似的推杆。如果他命中了,系统还会预测这一推杆对于他赢得联邦快递杯或在第二轮中领先的重要性有多大。
为了实现不同的解说风格,PGA Tour正在探索如何使用生成式AI投射不同的语气和口吻,无论是解说员的专业风格,还是针对年轻球迷或新手球迷的友好风格,从而吸引更多的观众群体。
在技术层面上,PGA Tour与亚马逊云科技的生成式AI创新中心密切合作,利用亚马逊云科技的Bedrock等工具准备和索引数据。它们首先需要整理PGA Tour过去20多年积累的射击数据,以及30多年的媒体指南PDF文件、网站内容、媒体资产管理系统中的视频内容等海量数据。亚马逊云科技的Kendra工具可以帮助索引这些内容,为生成式AI查询做好准备。
接下来,PGA Tour需要评估不同的模型,判断哪些模型最适合处理统计数据、媒体指南或视频内容。它们将使用Bedrock中的模型评估工具来完成这一任务。
此外,PGA Tour非常重视生成内容的准确性,因为在体育领域,准确性是至关重要的。它们正在建立工具和实践,以确保生成的内容在统计数据、品牌调性等方面的正确性。例如,当生成罗里·麦克罗伊从10英尺距离的入球率时,必须保证数据的准确性。
同时,PGA Tour还在设置防护措施,如红队测试、品牌一致性检查等,以避免产生有害、有偏见的内容,并确保生成的内容符合PGA Tour的品牌调性,真实地代表了球员的形象。
未来,PGA Tour希望将生成式AI应用于更多场景,为球员提供个人化的比赛分析,帮助他们更好地理解自己的表现。例如,一位球员结束比赛后,生成式AI可以根据该球员的打法习惯和当天的表现,分析他在哪些方面表现良好,哪些方面有待改进,为球员和教练提供宝贵的参考。
另一个应用场景是为PGA Tour的工作人员提供效率,让他们能够快速获取历史数据和背景信息,从而创作出更丰富的内容。工作人员可以询问生成式AI系统,了解某位球员10年前在某场比赛的表现,以及与今年的表现有何不同,系统就会自动整理出相关的数据和分析,为内容创作提供有力支持。
此外,PGA Tour还计划利用生成式AI为电视转播提供支持。例如,解说员可以要求系统为他们关注的5名球员生成2到3个新的话题点,供他们在解说时使用,从而为观众提供更丰富、更深入的赛事分析。这些话题点将涵盖过去无法呈现的内容,为赛事转播增添新的维度。
对于那些希望开始使用生成式AI的人,萨瓦尔先生的建议是实验和教育。他强调,每个组织使用生成式AI的方式都不尽相同,工具也在快速发展,因此需要亲自动手实践,训练模型、设置防护措施,并教会模型如何在组织的数据和内容环境中工作。这需要一些时间,但最终会带来巨大的价值。
总之,PGA Tour正在利用亚马逊云科技的生成式AI解决方案,为球迷带来前所未有的个性化体验,提高工作效率,并为球员提供更深入的比赛分析。这是一个激动人心的创新之旅,值得我们继续关注。
总结
职业高尔夫球巡回赛(PGA Tour)已踏上了一段令人兴奋的人工智能生成之旅,旨在为全球高尔夫球爱好者创造个性化和身临其境的体验。作为该组织数字平台的负责人,Scott Saval一直站在这一变革性努力的前沿,利用亚马逊云科技工具并与Generative AI Innovation Center合作。
主要目标是生成针对个人球员及其表现的情境化评论和见解。通过利用人工智能生成技术的力量,PGA Tour旨在为球迷提供深入的分析、历史背景和预测见解,增强他们对这项运动的理解和参与度。这包括围绕关键射门生成叙事、分析球员倾向性,甚至根据数据驱动模型预测潜在结果。
此外,PGA Tour正在探索通过创建个性化球员代理来协助球员和教练的方式,这些代理可以分析表现、确定需要改进的领域并提供量身定制的反馈。这种创新方法旨在为球员提供宝贵的见解,帮助他们完善策略。
为实现这些目标,PGA Tour正在精心准备其数据和内容,利用亚马逊云科技服务(如Kendra)对几十年来的媒体指南、视频资产和射击链接数据进行索引。模型评估、准确性和品牌一致性是至关重要的考虑因素,确保生成的内容可靠、无偏见并与组织的价值观保持一致。
随着技术不断发展,Scott Saval强调实验和教育的重要性。亲身体验人工智能生成工具、训练模型和实施防护措施是在PGA Tour业务背景下充分发挥这一变革性技术潜力的关键步骤。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 – 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。