python自然语言处理实战学习——2

本文深入探讨了Python在自然语言处理中的中文分词技术,包括规则分词、统计分词和混合分词,重点介绍了Jieba分词库的工作原理和实践应用。此外,还讨论了词性标注和命名实体识别,如jieba的词性标注功能,以及基于规则和统计的命名实体识别方法。最后,展示了日期和地名识别的实战案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python自然语言处理实战学习笔记2

第三章 中文分词技术

1、在处理中文文本时,需要进行分词处理,将句子转化为此的表达。这个切词处理过程就是中文分词,它通过计算机自动识别出句子的词,在词间加入边界标记符,分割出各个词汇。
中文自动分词被提出以来,主要归纳为“规则分词”,“统计分词”,“混合分词(规则+统计)”这三个主要流派。

2、规则分词——基于规则的分词是一种机械分词方法,主要是通过维护词典,在切分语句时,将语句的每个字符串与词表中的词进行逐一匹配,找到则切分,否则不予切分。

  • 按照匹配切分的方式,主要有正向最大匹配法、逆向最大匹配法以及双向最大匹配法三种方法。

在这里插入图片描述

# -*- coding:utf-8 -*-

class MM(object):
    def __init__(self):
        self.window_size = 3
        
    def cut (self,text):
        result = []
        index = 0
        text_length = len (text)
        dic = ["研究","研究生","生命","命","的","起源"]
        while text_length > index:
            for size in range (self.window_size+index,index,-1):   #4,0,-1
                piece = text[index:size]
                if piece 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值