n个人围成圈,从0开始报数,一直报到m-1退出,剩下的人继续从0开始报数。求最后一个人在n个人中的编号,这就是一个约瑟夫问题。
第一个出列的人定是m%n-1.然后剩下的人组成了一个新的约瑟夫环
第一个人从m%n开始,剩下人又会组成一个新的约瑟夫环子问题
可以推出公式为f(n,m)=(f(n-1,m)+m)%n
class Solution {
public int LastRemaining_Solution(unsigned int n, unsigned int m)
{
if(n==0)
return -1;
if(n==1)
return 0;
else
return (LastRemaining_Solution(n-1,m)+m)%n;
}
};
第二种就是按照正常来做,利用链表来完成约瑟夫环的构建。
然后进入无限循环直到最后链表中只剩最后一个,循环m-2次,在cur为m-2的这个节点时候,令它的下一个等于下一个的下一个,直接跳过m-1这个节点。
import java.util.LinkedList;
public class Solution {
public int LastRemaining_Solution(int n, int m) {
if(n<=0 || m<=0) return -1;
if(n==1 || m==1) return 0;
Node root=new Node(0);
Node cur=root;
for(int i=1;i<n;i++){
cur.next=new Node(i);
cur=cur.next;
}
cur.next=root;
cur=root;
while(true){
int count=0;
while(count<m-2){
cur=cur.next;
count++;
}
count=0;
cur.next=cur.next.next;
cur=cur.next;
if(cur==cur.next)return cur.val;
}
}
}
class Node{
int val;
Node next=null;
Node(int val){
this.val=val;
}
}