约瑟夫环

本文探讨了约瑟夫问题的两种解法:递归和链表实现。递归解法利用了数学公式f(n,m)=(f(n-1,m)+m)%n,而链表实现则通过构建约瑟夫环并移除节点来模拟过程,直到链表只剩最后一个节点。这两种方法都有效地解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

n个人围成圈,从0开始报数,一直报到m-1退出,剩下的人继续从0开始报数。求最后一个人在n个人中的编号,这就是一个约瑟夫问题。
第一个出列的人定是m%n-1.然后剩下的人组成了一个新的约瑟夫环
第一个人从m%n开始,剩下人又会组成一个新的约瑟夫环子问题
可以推出公式为f(n,m)=(f(n-1,m)+m)%n

class Solution {
public int LastRemaining_Solution(unsigned int n, unsigned int m)
    {
        if(n==0)
            return -1;
        if(n==1)
            return 0;
        else
            return (LastRemaining_Solution(n-1,m)+m)%n;
    }
};

第二种就是按照正常来做,利用链表来完成约瑟夫环的构建。
然后进入无限循环直到最后链表中只剩最后一个,循环m-2次,在cur为m-2的这个节点时候,令它的下一个等于下一个的下一个,直接跳过m-1这个节点。

import java.util.LinkedList;
public class Solution {
    public int LastRemaining_Solution(int n, int m) {
           if(n<=0 || m<=0) return -1;
           if(n==1 || m==1) return 0;
           Node root=new Node(0);
           Node cur=root;
           for(int i=1;i<n;i++){
               cur.next=new Node(i);
               cur=cur.next;
           }
           cur.next=root;
           cur=root;
           while(true){
               int count=0;
               while(count<m-2){
                   cur=cur.next;
                   count++;
               }
               count=0;
               cur.next=cur.next.next;
               cur=cur.next;
               if(cur==cur.next)return cur.val;
           }
    }
}
class Node{
    int val;
    Node next=null;
    Node(int val){
        this.val=val;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值