python数据分析——缺失值判断

本文介绍了如何在数据分析中检查数据缺失值的方法,包括使用`isnull()`函数来判断数据是否存在缺失,通过`sum()`计算特定列如Cabin的缺失值数量,以及利用`info()`和`isnull().sum()`全面查看各列的缺失值情况。这些步骤对于数据预处理至关重要,确保后续分析的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导入数据

 判断数据是否存在缺失值:

data.isnull()

 查看"Cabin"列数据缺失值的个数:

data.Cabin.isnull().sum()

 查看每一列数据缺失值的个数:(方法一)

data.info()

查看每一列数据缺失值的个数:(方法二)

data.isnull().sum()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值