hot100_283.移动零
给定一个数组 nums
,编写一个函数将所有 0
移动到数组的末尾,同时保持非零元素的相对顺序。
请注意 ,必须在不复制数组的情况下原地对数组进行操作。
示例 1:
输入: nums = [0,1,0,3,12]
输出: [1,3,12,0,0]
示例 2:
输入: nums = [0]
输出: [0]
提示:
-
1 <= nums.length <= 104
-
-231 <= nums[i] <= 231 - 1
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
void moveZeroes(vector<int>& nums) {
int l = 0, r = 0;
bool flag = true;
while(r < nums.size() && l < nums.size()){
if(flag){
//true时判断l指针时候指向第一个0元素,不是的话向后寻找第一个0,找到之后将flag设为false,移动r指针
if(nums[l] == 0) {
r = l + 1;
flag = false;
}
else {
l++;
}
}
else {
//true时判断r指针时候指向第一个非0元素,找到第一个非零元素与l指针指向的元素互换
if(nums[r] != 0) {
nums[l] = nums[r];
nums[r] = 0;
flag = true;
l++;
}
else {
r++;
}
}
}
}
};
int main(){
Solution S;
vector<int> nums = {0, 1, 0, 3, 12};
S.moveZeroes(nums);
for(int i = 0; i < nums.size(); i++){
cout << nums[i] << " " ;
}
cout<<endl;
return 0;
}
hot100_11.盛最多水的容器
给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
**说明:**你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
class Solution {
public:
int maxArea(vector<int>& height) {
int r = height.size() - 1, l = 0;
int maxA = 0;
while(r != l){
//每次移动指向元素值更小的那一个指针,每次计算一次面积
maxA = max(maxA, (r - l) * min(height[r], height[l]));
if(height[r] < height[l]){
r -= 1;
}
else {
l += 1;
}
}
return maxA;
}
};
int main(){
vector<int> height = {1,8,6,2,5,4,8,3,7};
Solution A;
int res = A.maxArea(height);
cout << res <<endl;
return 0;
}
hot100_15.三数之和
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为 0
且不重复的三元组。
**注意:**答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
int n = nums.size();
// 排序,方便使用双指针
sort(nums.begin(), nums.end());
// 遍历每个元素作为三元组的第一个数
for (int i = 0; i < n - 2; i++) {
// 跳过重复的元素
if (i > 0 && nums[i] == nums[i - 1]) continue;
int target = -nums[i]; // 目标值变为 -nums[i]
int left = i + 1, right = n - 1;
// 使用双指针查找剩下的两个数
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == target) {
result.push_back({nums[i], nums[left], nums[right]});
// 跳过重复的元素
while (left < right && nums[left] == nums[left + 1]) left++;
while (left < right && nums[right] == nums[right - 1]) right--;
left++;
right--;
}
else if (sum < target) {
left++; // 需要增大和,所以左指针右移
}
else {
right--; // 需要减小和,所以右指针左移
}
}
}
return result;
}
};
int main(){
vector<int> nums = {-1,0,1,2,-1,-4};
Solution A;
vector< vector<int> > res = A.threeSum(nums);
for(int i = 0; i < res.size(); i++){
for(int j = 0; j < res[i].size(); j++){
cout << res[i][j] << " ";
}
cout << endl;
}
return 0;
}
hot100_42.接雨水
给定 n
个非负整数表示每个宽度为 1
的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9
提示:
-
n == height.length 1 <= n <= 2 * 104 0 <= height[i] <= 105
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
int trap(vector<int>& height) {
int res = 0;
int l_max = 0, r_max = 0; //维护左右最大值
int l = 0, r = height.size() - 1; //左右“指针”
while(l < r)
{
if(height[l] < height[r]){
height[l] >= l_max ? l_max = height[l] : res += (l_max - height[l]);
l++;
}
else{
height[r] >= r_max ? r_max = height[r] : res += (r_max - height[r]);
r--;
}
}
return res;
}
};
int main(){
Solution A;
vector<int> height = {0,1,0,2,1,0,1,3,2,1,2,1};
cout << A.trap(height)<<endl;
return 0;
}
解法2:单调栈
class Solution {
public:
int trap(vector<int>& height) {
int res = 0;
stack<int> stack;
for (int i=0; i<height.size(); i++) {
//不单调时弹出栈顶元素
while (!stack.empty() && height[stack.top()] < height[i]) {
int top = stack.top();
stack.pop();
if (stack.empty()) {
break;
}
int width = i - stack.top() - 1;
int h = min(height[i], height[stack.top()]) - height[top];
res += width * h;
}
//单调时将下标作为值压栈
stack.push(i);
}
return res;
}
};