Transformer细节(五)——详解Transformer解码器的自注意力层和编码器-解码器注意力层数据处理机制

一、自注意力层(Self-Attention Layer)并行处理目标序列

        自注意力层的任务是计算输入序列中每个位置之间的关系,并生成每个位置的表示。这一过程可以并行处理,因为它并不依赖于前一个位置的计算结果。

自注意力机制的具体步骤

1.输入嵌入与位置编码

         目标序列的前缀(如 "\<start> I am a")经过词嵌入层和位置编码,得到每个时间步的嵌入表示。

2. 生成查询、键、值向量

        对于输入序列的每个时间步,通过线性变换生成查询(Query)、键(Key)、值(Value)向量。对于时间步 \( t \),表示为 \( Q_t, K_t, V_t \)。

3.计算注意力得分

        并行计算所有时间步之间的注意力得分:
     \[
     \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) V
     \]
   &nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值