支持向量机回归(概念+实例)

目录

前言

一、基本概念

1. 支持向量机回归的原理

2. 支持向量机回归的工作方式

3. 支持向量机回归的优缺点

4. 支持向量机回归的应用

二、实例


前言

支持向量机(Support Vector Machine,SVM)是一种强大的机器学习算法,最初是用于分类问题,但后来也被扩展用于回归问题。支持向量机回归(Support Vector Regression,SVR)是一种非常有用的技术,特别适用于具有复杂特征关系的数据集。

一、基本概念

1. 支持向量机回归的原理

支持向量机回归的核心原理是通过最小化预测误差来拟合数据,并且在拟合过程中保持一个边界(间隔),使得大部分数据点都落在这个边界之内。SVR与分类问题中的支持向量机(SVC)有些相似,但其目标是拟合数据而不是分离数据。

在SVR中,我们定义一个边界,由一个中心线和两个平行的边界线组成。这些边界线之间的距离称为间隔,它由用户预先设定。支持向量机的目标是找到一个函数,使得大部分数据点都落在间隔内,并且使得落在间隔之外的数据点的预测误差最小化。这些落在间隔之外的数据点被称为支持向量。

2. 支持向量机回归的工作方式

SVR的工作方式可以通过以下步骤来理解:

a. 数据准备: 首先,将数据准备成特征矩阵和目标向量的形式。

b. 定义边界: 在SVR中,我们需要定义一个边界,即间隔。这个间隔由用户根据数据集的特点预先设定。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值