目录
前言
支持向量机(Support Vector Machine,SVM)是一种强大的机器学习算法,最初是用于分类问题,但后来也被扩展用于回归问题。支持向量机回归(Support Vector Regression,SVR)是一种非常有用的技术,特别适用于具有复杂特征关系的数据集。
一、基本概念
1. 支持向量机回归的原理
支持向量机回归的核心原理是通过最小化预测误差来拟合数据,并且在拟合过程中保持一个边界(间隔),使得大部分数据点都落在这个边界之内。SVR与分类问题中的支持向量机(SVC)有些相似,但其目标是拟合数据而不是分离数据。
在SVR中,我们定义一个边界,由一个中心线和两个平行的边界线组成。这些边界线之间的距离称为间隔,它由用户预先设定。支持向量机的目标是找到一个函数,使得大部分数据点都落在间隔内,并且使得落在间隔之外的数据点的预测误差最小化。这些落在间隔之外的数据点被称为支持向量。
2. 支持向量机回归的工作方式
SVR的工作方式可以通过以下步骤来理解:
a. 数据准备: 首先,将数据准备成特征矩阵和目标向量的形式。
b. 定义边界: 在SVR中,我们需要定义一个边界,即间隔。这个间隔由用户根据数据集的特点预先设定。</