加权递推平均滤波法

加权递推平均滤波法是一种数字滤波方法,它的原理是将当前样本值与前几个样本值加权平均得到滤波结果。

具体来说,假设当前样本值为x(n),前k个样本值为x(n-1), x(n-2),…,x(n-k),则加权递推平均滤波法的计算公式为:

y(n) = (1-a)x(n) + a*y(n-1)

其中,y(n)为滤波后的结果,a是滤波系数,通常取值为0.8~0.99之间。根据计算公式可以看出,滤波结果是当前样本值和前一次滤波结果的加权平均。

由于加权递推平均滤波法考虑了多个样本值的加权平均,因此对于周期性噪声有较好的抑制效果。同时由于只需要保存前一次滤波结果,因此存储空间较小,适合于嵌入式系统等资源受限的环境下使用。

在这里插入图片描述

一、C 实现加权递推平均滤波法及代码详解

加权递推平均滤波法(Weighted Recursive Averaging Filter)是数字信号处理中常用的一种滤波方法,它针对一段连续的信号进行平滑处理。该方法能够有效地消除信号中的噪声和不良波动,使信号更加准确、平稳。

实现原理

加权递推平均滤波法使用一个固定长度的滑动窗口(N个数据),在每次输入新的数据时,将窗口内的数据按照一定的权重进行加权平均,并输出平均值。在下一次输入新的数据时,窗口向右移动一位,将新的数据加入到窗口的末尾,并将窗口的前端丢弃掉。通过这种方式,不断对信号进行平滑处理,以达到降噪的目的。

加权递推平均滤波法的具体计算公式如下所示:

Y k = ( 1 − α ) Y k − 1 + α X k Y_k = (1-\alpha)Y_{k-1}+\alpha X_k Yk=(1α)Yk1+αXk

其中, X k X_k Xk为当前输入的数据, Y k Y_k

### 加权递推平均滤波法流程解析 加权递推平均滤波是一种用于平滑数据序列的技术,在保持响应速度的同时有效抑制噪声。该方法通过对新旧样本赋予不同权重来实现动态调整,具体过程如下: #### 1. 初始化参数设置 设定初始条件,包括但不限于历史数据长度N以及当前时刻t=0时的数据值。 #### 2. 获取最新测量值 每当有一个新的输入信号到来,则将其作为最新的测量值`new_value`保存下来[^4]。 ```python def get_new_measurement(): # 假设此函数返回一个新的AD采样值 pass ``` #### 3. 计算加权因子α 根据应用场景需求定义合适的加权系数α(通常取值范围为0到1之间),其中较大的α意味着给予最近一次观测更高的重视程度;较小的α则倾向于保留更多过去的信息。 #### 4. 更新输出结果 利用公式\[output_t=(1-\alpha)\times output_{t-1}+\alpha\times input_t\]更新最终输出的结果,这里\(input_t\)代表第t次接收到的新测量值,而\(output_{t-1}\)表示上一轮迭代后的输出结果。 ```python def weighted_recursive_average_filter(alpha, previous_output, current_input): """ :param alpha: 权重因子 (0 < α ≤ 1) :param previous_output: 上一步骤中的输出值 :param current_input: 当前时间步获得的新输入 :return: 经过加权递归均值过滤器处理过的输出 """ return (1 - alpha) * previous_output + alpha * current_input ``` #### 5. 迭代执行上述步骤直至结束 持续重复获取新数据并应用加权递推平均运算直到整个数据流处理完毕为止。 --- 为了更好地理解这一过程,可以绘制一个简单的流程图表以直观展示各环节之间的关系: ![加权递推平均滤波法](https://via.placeholder.com/800x400?text=%E5%8A%A0%E9%87%8D%E9%80%92%E6%8E%A8%E5%B9%B3%E5%9D%87%E6%BB%A1%E6%B5%8B%E6%B3%95) > 注:由于无法直接提供实际图片链接,请自行想象或创建一张包含以上描述内容的工作流图形化表达形式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值