加权递推平均滤波法是一种数字滤波方法,它的原理是将当前样本值与前几个样本值加权平均得到滤波结果。
具体来说,假设当前样本值为x(n),前k个样本值为x(n-1), x(n-2),…,x(n-k),则加权递推平均滤波法的计算公式为:
y(n) = (1-a)x(n) + a*y(n-1)
其中,y(n)为滤波后的结果,a是滤波系数,通常取值为0.8~0.99之间。根据计算公式可以看出,滤波结果是当前样本值和前一次滤波结果的加权平均。
由于加权递推平均滤波法考虑了多个样本值的加权平均,因此对于周期性噪声有较好的抑制效果。同时由于只需要保存前一次滤波结果,因此存储空间较小,适合于嵌入式系统等资源受限的环境下使用。
一、C 实现加权递推平均滤波法及代码详解
加权递推平均滤波法(Weighted Recursive Averaging Filter)是数字信号处理中常用的一种滤波方法,它针对一段连续的信号进行平滑处理。该方法能够有效地消除信号中的噪声和不良波动,使信号更加准确、平稳。
实现原理
加权递推平均滤波法使用一个固定长度的滑动窗口(N个数据),在每次输入新的数据时,将窗口内的数据按照一定的权重进行加权平均,并输出平均值。在下一次输入新的数据时,窗口向右移动一位,将新的数据加入到窗口的末尾,并将窗口的前端丢弃掉。通过这种方式,不断对信号进行平滑处理,以达到降噪的目的。
加权递推平均滤波法的具体计算公式如下所示:
Y k = ( 1 − α ) Y k − 1 + α X k Y_k = (1-\alpha)Y_{k-1}+\alpha X_k Yk=(1−α)Yk−1+αXk
其中, X k X_k Xk为当前输入的数据, Y k Y_k