
AI专栏
文章平均质量分 83
weixin_47233946
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
详解大模型幻觉
摘要: 大型语言模型(LLMs)的"幻觉"问题指模型生成事实错误、逻辑矛盾或无关内容的现象,在专业领域可能引发严重风险。技术根源包括训练数据噪声(如3%网页错误)、自回归生成的误差累积、知识表征局限性等,典型案例涉及医疗咨询和法律文书的潜在危害。应对策略涵盖训练阶段(知识蒸馏、对抗训练)、推理控制(约束解码)及知识增强(检索生成RAG),未来需结合神经符号系统、持续学习和多模态验证。解决幻觉问题需融合神经网络、符号推理与人类监督,是构建可信AI的关键挑战。原创 2025-05-30 13:47:21 · 508 阅读 · 0 评论 -
最强的CursorRules RIPER-5
The RIPER-5 MODE: STRICT OPERATIONAL PROTOCOL outlines a structured framework for Claude 3.7, an AI integrated into Cursor IDE, to prevent unauthorized code modifications and ensure precise collaboration. The protocol defines five distinct modes: RESEARCH:原创 2025-05-21 21:34:42 · 2078 阅读 · 0 评论 -
PostgreSQL MCP 使用案例
PostgreSQLMCP(PostgreSQL Multi-host Cluster Provisioning)是一个用于部署和管理多节点PostgreSQL集群的工具,提供高效的数据库集群管理、高可用性保障和负载均衡功能。本文档介绍了PostgreSQLMCP的基本使用方法、常见应用场景及性能优化建议。通过安装和配置PostgreSQLMCP,用户可以轻松实现数据库集群的连接、读写分离、事务处理、批量操作和连接池监控等功能。此外,文档还提供了高级用法,如自定义负载均衡策略、故障转移与自动恢复,以及利用P原创 2025-05-15 21:42:04 · 1240 阅读 · 0 评论 -
本地文件操作 MCP (多通道处理) 使用案例
文件操作MCP(Multi-Channel Processing)是一个高效处理本地文件的框架,支持并行处理、批量操作、监控和异常处理等功能。通过多通道架构,MCP显著提升了大文件或大量文件处理的效率。安装简单,配置灵活,支持多种高级功能如文件加密、并行搜索、差异比较与合并等。MCP还提供了性能优化建议和最佳实践,如调整通道数量、合理设置缓冲区大小、使用内存映射等,以确保在不同场景下获得最佳性能。MCP适用于需要高效处理文件的应用场景,通过合理配置和优化,可以显著提升文件操作的效率和可靠性。原创 2025-05-15 21:40:55 · 1254 阅读 · 0 评论 -
详解注意力机制
尽管面临计算复杂度和内存消耗的挑战,但随着研究的不断深入,更加高效和强大的注意力变体不断涌现,为人工智能的发展提供了强大动力。2. **长序列处理**:针对长序列处理问题,出现了Longformer、Reformer等模型,它们通过各种技术减少了注意力的计算量。1. **计算复杂度**:标准自注意力的计算复杂度为O(n²),其中n是序列长度,这限制了它处理长序列的能力。1. **高效注意力**:为解决计算复杂度问题,研究人员提出了各种高效注意力变体,如线性注意力、稀疏注意力等。原创 2025-05-13 22:02:50 · 833 阅读 · 0 评论 -
Python MCP客户端SDK实现
print("市场概览:", parsed_output.get("market_overview", "未提供"))print("\nSWOT分析:", parsed_output.get("swot_analysis", {}))print("\n预测:", parsed_output.get("forecast", "未提供"))"target_audience": "25-40岁环保意识强的消费者""""MCP协议客户端SDK,用于与支持MCP协议的大模型服务进行交互"""原创 2025-04-25 21:01:26 · 1214 阅读 · 0 评论 -
将天气查询API封装为MCP服务
天气报告 - {location.get('name')}, {location.get('country')}天气状况: {current.get('condition', {}).get('text')}体感温度: {current.get('feelslike_c')}°C。风速: {current.get('wind_kph')} km/h。时间: {current.get('last_updated')}温度: {current.get('temp_c')}°C。date: 可选,查询日期。原创 2025-04-23 22:55:33 · 993 阅读 · 0 评论 -
100个有用的AI工具 之 生成透明图像LayerDiffuse
LayerDiffuse 是 ControlNet 作者的新作,目前可以在sd-forge UI,和ComfyUI上使用。今天介绍的是SD的一个插件LayerDiffuse,它可以帮助我们用SD生成透明的png图层。我们在用PS抠图的时候,对于头发、毛绒边这种图是非常头疼的,有了它,可以直接生成半透明的png图,就不需要抠图了。Stable Diffusion是开源图像生成界的扛把子,最强的地方在于它的可控性,通过ControlNet,和一系列插件,可以非常精准地控制图像生成的需求。原创 2025-04-14 16:01:41 · 521 阅读 · 0 评论 -
本地化打造自己的AI Copilot 笔记系统
Notion确实是一个非常优秀的产品,它创新的数据库功能,为笔记软件带来了新的体验。(这种订阅制的AI产品,单个价格还能接受,但以后每个软件都有AI功能,每个月都来一刀,钱包受不了啊)接下来我们来体验一下:点击左侧菜单的copilot chat按纽,右侧会显示copilot面板,在输入框就可以进行提问。总体来说,使用下来,体验并不如Notion那么丝滑,但是它也确实是解决了几个Notion的痛点,可以作为平替。今天我要介绍的是一个本地化的免费的AI copilot 笔记方案。是一款免费的笔记软件。原创 2025-04-11 22:43:16 · 460 阅读 · 0 评论 -
SD3开放权重下载,效果惊艳!附comfyUI工作流教程
画面效果和MJ相比,不相上下,MJ想象更丰富一些,SD3可以通过参数调整是更偏向提示词还是让AI更多自由发挥。6. 目前用的是官方原版模型,借鉴1.5和xl的经验,后续社区会出不少微调模型,在画质、风格上还会有提升。5. 生成速度略慢于sdxl,我用的p40卡,生成一张1024x1024的图片,28步,大约要1分钟。可以说SD3模型,已经能满足各种场景的生产环境使用了。这是官方给出来的生成效果图,也附带了提示词,下面是第一张图片的提示词。此外,我也找了一些Midjourney的咒语,看生成的图片对比。原创 2025-04-11 22:41:43 · 411 阅读 · 0 评论 -
AI产品经理必须知道的技术 之六 【大模型测评】
Huggingface做了一个OpenLLM榜单,它只做榜单,测评的数据集和验证工具是开源基准测试库 EleutherAI的 LM Evaluation Harness,而这个测试库,也是整合了很多开源的数据集,其中就包括MMLU)。比如斯坦福的AlpacaEval排行榜,它可以自己测试,也可以提交给官方进行测试,需要先发邮件申请,然后通过后,提供模型的访问API。这些数据集,大多都是公开的。也并非所有的测评基准都包含上面所有的维度,事实上有很多测评基准是非常简单的,测评的维度远远小于这些范围。原创 2025-04-09 22:54:25 · 720 阅读 · 0 评论 -
AI产品经理必须知道的技术 之七 【注意力机制】
其次,最重要的是,注意力机制解决了并行计算的问题,这使得大规模的模型训练成为可能,大力出奇迹之后,模型的性能得到了质的提升。我们也可以明白,为什么使用COT(思维链),或者让大模型反思,可以让大模型生成更好的答案,它的本质是这些输入,通过注意力机制,调整了输入的嵌入向量,使这个向量更接近它要输出的答案。通过个公式,计算出了每一个token和其它的token的加权向量Attention(Q,K,V),如上图,再对每一列进行加权求和,再加上它的初始Embedding,得到这每个token的最终嵌入向量。原创 2025-04-09 22:52:52 · 936 阅读 · 0 评论 -
超简单在本地部署Llama3的方案
llama3用了15T的token训练,数据量是llama2的7倍,是gemma的2倍。8B的版本,在测评中,打败了前不久刚发布的Gemma7B版本,而70B版本则打败了Gemini Pro1.5,和Claude3。OLLAMA_HOST OLLAMA模型以服务方式运行的时候,即提供API,默认是只能被localhost访问的,设置这个为0.0.0.0,可以被网络访问。客户端软件有非常多。OLLAMA_MODELS OLLAMA模型的下载路径,默认是在C盘的,如果要改变,可以设置这个环境变量。原创 2025-04-08 22:37:07 · 846 阅读 · 0 评论 -
AI产品经理必须知道的技术之 五 【AI相关概念术语1】
通俗来讲,LORA模型的原理是,训练一个低秩的小模型,将小模型与大模型的参数合并,从而改变模型的参数。知识蒸馏通过训练一个简化的模型(通常称为学生模型),将一个复杂模型(通常称为教师模型)的知识转移给学生模型,从而减少模型的大小和计算复杂度,同时尽量保持模型的性能。大模型推理时常需要设置的参数之一,大模型推理中,temperature用来控制模型输出结果的随机性,一般来说,temperature介于0-1之间,temperature值越高,生成的内容随机性越大,反之,则生成的内容更准确,但缺乏多样性。原创 2025-04-08 22:35:36 · 993 阅读 · 0 评论 -
AI产品经理必须知道的技术 之 【大模型压缩】
我的理解是,去掉一些不是很重要···············的信息,有时候确实是能让决策更简单,也更准确。大模型是一场军备竞赛,各大厂商不断推出能力更强的模型,通常来说,要么是训练参数量翻倍更大的模型,要么是利用MoE架构,由多个专家模型,组成一个多模态大模型。大模型的算法是神经网络,模仿人类大脑的结构,包含多个神经元,和权重(生物学上是突触,两个神经元之间的连接点),由多个层组成。这确实是有可能的,但厉害的剪枝算法,就是能在保证最终效果的前提下,尽可能地裁剪,这就要看园丁师傅的水平了。原创 2025-04-07 22:53:36 · 599 阅读 · 0 评论 -
AI产品经理必须知道的技术 之 【RAG】
这其实也是一个趋势,有许多AI应用短期很火,是因为它借助AI能力满足了一部份人的需求,而底层AI公司,现阶段主要在底层模型能力上发力,应用端则开放API,让生态自由发展。做AI应用的创业团队,都需要考虑,尽可能的轻量、快速迭代。我们知道一段文字,哪怕是一个词,它包含的信息都是非常非富的,并且不词与词之间,都有关联关系,比如说狗、dog、gou、旺财、二哈,这些词它们的意思是很接近的。你也可以将过去大模型回答问题的记录,将其中常见的问题,优秀的回答,差的回答,经过审核筛选后,也作为知识的一部份。原创 2025-04-07 22:52:22 · 1294 阅读 · 0 评论 -
AI产品经理必须知道的技术 之 【RAG】
这其实也是一个趋势,有许多AI应用短期很火,是因为它借助AI能力满足了一部份人的需求,而底层AI公司,现阶段主要在底层模型能力上发力,应用端则开放API,让生态自由发展。做AI应用的创业团队,都需要考虑,尽可能的轻量、快速迭代。我们知道一段文字,哪怕是一个词,它包含的信息都是非常非富的,并且不词与词之间,都有关联关系,比如说狗、dog、gou、旺财、二哈,这些词它们的意思是很接近的。你也可以将过去大模型回答问题的记录,将其中常见的问题,优秀的回答,差的回答,经过审核筛选后,也作为知识的一部份。原创 2025-04-06 22:20:56 · 661 阅读 · 0 评论 -
AI程序员Devin出世,程序员离失业还有多久?
但是AI也不会取代所有的技术,至少从现在来看,AI在学习已有的知识方面能力很强,但并未看到AI能够自己创造。我觉得,在AI到来之前,我们的软件工程,有从知识密集型产业向人力密集型产业变化的趋势。头部的互联网大厂,靠着用户规模红利的优势,有足够的利润支撑高薪员工。今年以来,AI已经几次让我们震撼了,前有OpenAI的Sora,Claude3,现在在Devin,相信后面还会有越来越多,越来越大的惊喜。例如:Devin可以自己决定,用浏览器打开API文档,学习如何调用API,然后编写代码,调试bug,部署运行。原创 2025-04-04 20:00:00 · 459 阅读 · 0 评论 -
Nvidia推出的AI软件,可以在个人电脑上安装AI知识助理
不仅如此,您还可以提供 YouTube 播放列表的 URL,然后该应用会自动加载播放列表中的视频的转写内容,让您能够查询视频中包含的内容。如果将模型做小,能力又恰好能满足某些应用场景,使模型能够运行在消费级终端上,那么未来的应用场景将是十分广阔的,想象一下,每一台PC,每一部手机,甚至汽车、机器人,如果都能在本机运行AI,那在应用端就可以有无限的想象。概括来说,就是Nvidia提供了一个本地安装的软件,可以将用户本地的知识库(文档)或者网页,提供给本地的LLM模型,LLM模型根据内容给出回复。原创 2025-04-03 22:30:32 · 402 阅读 · 0 评论