RAG(Retrieval-Augmented Generation)技术详解

RAG(Retrieval-Augmented Generation)技术详解

RAG(检索增强生成)是大语言模型(LLM)领域的一项突破性技术,通过结合信息检索与文本生成能力,显著提升了模型在知识密集型任务中的表现。以下从核心原理、技术架构到应用实践进行全面解析。


一、RAG 核心概念与价值

1. 基本定义

RAG 是一种检索-生成混合架构,通过以下两步解决LLM的"知识固化"问题:

  1. 检索(Retrieve):从外部知识库(如数据库、文档)查找相关信息
  2. 生成(Generate):基于检索结果生成最终回答

2. 与传统LLM的对比

维度 纯LLM RAG
知识来源 仅依赖预训练数据(可能过时) 可访问最新/专有知识库
事实准确性 易产生幻觉(Hallucination) 检索结果提供事实依据
可解释性 黑箱生成 可追踪引用来源
适用场景 通用文本生成 知识密集型任务(问答、分析等)

3. 核心优势

  • 知识实时性:无需重新训练即可更新知识(如接入最新新闻)
  • 领域适配性:通过更换知识库快速适配医疗、法律等垂直领域
  • 成本效益:比微调大模型更轻量级

二、RAG 技术架构详解

1. 核心组件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值