RAG(Retrieval-Augmented Generation)技术详解
RAG(检索增强生成)是大语言模型(LLM)领域的一项突破性技术,通过结合信息检索与文本生成能力,显著提升了模型在知识密集型任务中的表现。以下从核心原理、技术架构到应用实践进行全面解析。
一、RAG 核心概念与价值
1. 基本定义
RAG 是一种检索-生成混合架构,通过以下两步解决LLM的"知识固化"问题:
- 检索(Retrieve):从外部知识库(如数据库、文档)查找相关信息
- 生成(Generate):基于检索结果生成最终回答
2. 与传统LLM的对比
维度 | 纯LLM | RAG |
---|---|---|
知识来源 | 仅依赖预训练数据(可能过时) | 可访问最新/专有知识库 |
事实准确性 | 易产生幻觉(Hallucination) | 检索结果提供事实依据 |
可解释性 | 黑箱生成 | 可追踪引用来源 |
适用场景 | 通用文本生成 | 知识密集型任务(问答、分析等) |
3. 核心优势
- 知识实时性:无需重新训练即可更新知识(如接入最新新闻)
- 领域适配性:通过更换知识库快速适配医疗、法律等垂直领域
- 成本效益:比微调大模型更轻量级