前言:
算法训练系列是做《代码随想录》一刷,个人的学习笔记和详细的解题思路,总共会有60篇博客来记录,计划用60天的时间刷完。
内容包括了面试常见的10类题目,分别是:数组,链表,哈希表,字符串,栈与队列,二叉树,回溯算法,贪心算法,动态规划,单调栈。
博客记录结构上分为 思路,代码实现,复杂度分析,思考和收获,四个方面。
如果这个系列的博客可以帮助到读者,就是我最大的开心啦,一起LeetCode一起进步呀;)
目录
完全背包基础知识
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。
1. 思路
在下面的讲解中,我依然举这个例子:
背包最大重量为4。
物品为:
每件商品都有无限个!问背包能背的物品最大价值是多少?
💡 本题不再按照动态规划五部曲来讲解,而是直接讲解完全背包和01背包在思路上面和代码实现上面的区别。
区别1:遍历顺序不同
首先在回顾一下01背包的核心代码
// 01背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
我们知道01背包必须先遍历物品,再遍历背包,其中内嵌的循环是从大到小遍历(逆序),为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 完全背包
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
为什么呢?
要理解这个区别,最好的办法是举例子,然后模拟状态转移的过程;
01背包dp状态图如下:每层的 j 逆序遍历。
完全背包dp状态图如下:每层的 j 正序遍历。
区别2:也可以先遍历背包,再遍历物品,for循环可颠倒
在01背包中,二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!
因为dp[j] 是根据 下标j之前所对应的 dp[j] 计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
要理解这个区别,最好的办法还是举例子,然后模拟状态转移的过程;
完全背包中 先遍历物品再遍历背包
// 完全背包
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
完全背包中 先遍历背包,再遍历物品
// 完全背包
// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
cout << endl;
}
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
💡 看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])
01背包中 如果先逆序遍历背包,再遍历物品呢?
// 01背包
// 先遍历背包,再遍历物品
for(int j = bagWeight; j >= 0; j--) { // 逆序遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0)
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
cout << endl;
}