本专栏致力于深入探讨 目标检测算法,专为零基础或初学者设计,非常适合新手朋友们。在本章节中,我将直接引用李老师的PPT以及网络资源,后续会提供原文链接以便大家查阅。本章节主要从目标检测的基础知识出发,沿着李老师的思路进行延伸讲解,力求做到简单易懂。最近由于开始了996的工作生活,更新有所延迟,请大家谅解。
😃如果您觉得内容有帮助,欢迎点赞、收藏,以及关注我哦!👍
0. 目标检测所需要的基础知识
在当前的目标检测领域,算法主要分为两种类型:基于锚框的方法和不需要锚框的方法。。 突然一说到这个概念大家可能有点懵,啥TM是锚框什么不是锚框呢??在这里还说不太清晰所以大家先知道有这两类就行了。
基于锚框的方法: 可以跳过
- 这类方法使用预定义的锚框(anchor boxes)来进行目标检测。锚框是固定形状和大小的框,覆盖到图像上以捕获可能的目标。经典的基于锚框的方法包括Faster
R-CNN、YOLOv2/YOLOv3等。- 优点在于其成熟性和较高的检测精度,但需要精细调整锚框参数以适应不同的检测任务。
不需要锚框的方法:
- 这类方法不依赖于预定义的锚框,而是通过不同的策略直接预测目标框的坐标。较为知名的不需要锚框的方法有YOLOv4、YOLOv5、CenterNet等。
- 优点在于简化了框架设计,减少了对锚框参数的依赖,同时在某些任务中表现出更好的速度和精度。
每种方法都有其适用的场景和优势,选择具体的算法通常需要根据任务的特点和要求进行权衡和测试。
现在就按照李老师的进度开始咱们的第一个知识点的学习:
锚框的概念在目标检测算法中是非常重要的,尤其是在基于锚框的检测方法中。首先需要注意的是,这里讨论的是基于锚框的目标检测架构,而不是具体的某一个算法。模型开始时会生成若干个锚框,并对每个锚框进行二分类操作。如果某个锚框被判定为背景,那就不需再进一步操作;如果被判定为物体,则需要进一步预测当前锚框与真实边缘框之间的偏移情况。
尽管这个过程可能看起来有些抽象和难以理解,但不要急于搞懂。我们正在入门阶段,后面的小结中会逐步深入讲解这个内容。嘻嘻,希望大家能在后续的学习中逐渐掌握这个概念。
交并比(Intersection over Union,IoU)是目标检测中的一个重要指标,用于衡量两个框之间的相似度。它的计算方式是两个框的交集面积除以它们的并集面积。Jaccard指数(实际上是相同的概念)类似,但IoU在目标检测中特别用于评估预测框与真实框的重叠程度。
简单理解,IoU和余弦相似度(cosine similarity)在概念上都是用于衡量相似性的指标,但它们的应用场景不同。余弦相似度通常用于评估向量之间的相似性,而IoU专注于空间区域的重叠。
在目标检测中,IoU值越高,意味着预测框与真实框之间的相似度越高,是衡量检测精度的一项重要标准。
锚框在目标检测模型中扮演着重要角色,它们是模型生成的预测框。这些锚框需要有相应的标签,就像图像分类中的图片有对应的预测数值一样这个数值形态要和真实的label一致。在目标检测中,每个锚框会被赋予一个预测的标签,以便模型进行进一步的处理。这是模型要进行预测的。注意这里是说如何让生成的锚框变成我们想要的label的过程。再次强调下这里面基于锚框生成的标号是一个预测数值 是通过锚框进行预测的。
具体来说,锚框的标签可以分为两类:
-
背景锚框:
- 如果一个锚框被判断为背景,则它不需要具体的坐标和类别信息。通常,背景锚框的标签可以简单地设为零,比如
0000
,因为背景不需要进行进一步的边缘框预测。
- 如果一个锚框被判断为背景,则它不需要具体的坐标和类别信息。通常,背景锚框的标签可以简单地设为零,比如
-
目标锚框:
- 如果一个锚框被判断为可能包含目标,则需要对其进行更详细的标注,包括与真实边缘框的偏移位置以及目标类别。这些信息帮助模型在训练过程中学习如何精确地预测物体的位置和类别。
通过为锚框赋予标签,模型可以更准确地进行目标检测,提高预测的精度和可靠性。这个过程是目标检测模型训练中的关键步骤之一。
具体是怎么预测的呢,则看下图:
结合之前提到的IoU方法,我们可以为所有锚框进行标注。模型生成了9个锚框,并与不同的真实框进行IoU计算,形成一个矩阵。我们寻找矩阵中最大的IoU值,并确定该值对应的锚框用于预测某个真实框(例如第三个真实框)。然后,我们从矩阵中删除对应的行和列,以避免其他锚框与同一真实框关联。通过一次次执行这个步骤,最终所有锚框都被标注:其中4个锚框与真实框关联,其他的则被标注为背景。
这样,模型的输出与真实框的标签实现了对齐,可以通过计算损失来优化模型,使其逐步收敛,提高预测的准确性和可靠性。我们成功让模型在生成锚框后得到了和真实label一样的输出结果,从而可以让模型急性收敛。注意我们讨论到了模型的收敛也就是说这个行为是发生在模型的训练阶段的。注意这个行为是训练阶段的行为。同样上述基于锚框标号的方式一定程度上就是在纠正模型告诉模型看到了什么的框才能被用于进行真实框的预测。好好理解理解这句话
在这里再次解释喜爱在训练阶段,通过为锚框进行标注和对齐真实框的标签,模型可以通过计算损失来优化自身,从而逐步收敛并提高预测的准确性和可靠性。
关于“基于锚框标号的方式在一定程度上就是在纠正模型,告诉模型哪些锚框可以用于进行真实框的预测”这句话的理解:
- 纠正模型:在训练过程中,通过将锚框与真实框正确匹配,模型学习到哪些特定的锚框特征与真实目标相关联。
- 指导模型:这种标注方式实际上是在指导模型学会识别和关注有效的特征框,而不是所有的锚框。
- 提高准确性:通过精确地标注锚框,模型可以学习到如何更好地调整锚框的预测,使其更贴近真实框。
因此,这一过程确实是模型训练阶段的关键步骤,帮助模型学会如何从生成的锚框中正确预测真实目标的位置和类别。
李老师提到的 NMS,即非极大值抑制(Non-Maximum Suppression),是一种在目标检测中用于消除多余重叠框的技术。这个技术主要在模型测试阶段使用,以确保最终的检测结果精简且准确。注意是测试阶段测试阶段测试阶段很多同学看这个看到这里就混淆了这个NMS在做什么看不懂了 前面我们说了让模型通过锚框去预测一个数值就是给每一个锚框一个预测结果吗,然后通过和真实的框进行预测拟合然后让模型收敛现在模型训练完了,你随便放一个图进去模型开始预测了进行测试阶段是用到的技术,注意了预测阶段的技术。
为啥要采用这个NMS技术呢?首先我们按照上面的例子模型在测试阶段还是会生成9个的锚框,那么问题来了没有真实框你咋知道哪个是用于预测哪个是背景呢??SO这是时候采用NMS首先看看基于锚框的技术时候我讲了模型首先生成锚框会对锚框做一个2分类。是不是预测的背景还是物体。如果是物体的话这个二分类数值很高如果是背景就会很低。所以设置一个阈值低低就删除了这个是我们的锚框就少了很多。正常情况下肯定不能仅仅有9个啊会很多的所以少了一大半。然后我们按照锚框的预测类别进行锚框分类,相同类别的按照上面的NMS急性计算,找到其最大的预测数值。然后将何其IOU很大的闪电,不就是删除了冗余的框了吗。为什么小的不删除呢。这是因为可能两个锚框标注的是不同的问题啊虽然是类别不同但是相同类别的多个物体被。按类别便利重复多次即可。
整理下NMS技术之所以被采用,是为了在模型生成的预测框中去除冗余框,提高检测的准确性和效率。在测试阶段,模型会生成许多锚框,并对每个锚框进行二分类:判断它是否包含目标物体或是背景。
具体流程如下:
- 二分类判定:
- 每个锚框都会得到一个分类分数,表示它是物体还是背景。如果分类分数很高,则该锚框可能包含目标物体;如果很低,该锚框则可>>能是背景。
- 设置一个阈值,低于阈值的锚框会被删除,因为它们可能是背景。这样能有效减少锚框的数量。
- 锚框分类:
- 对剩余的锚框按照预测类别进行分类, 相同类别的锚框会被分组处理。
- 应用NMS:
- 在每个类别的锚框中,应用NMS技术。选择置信度最高的预测框,然后抑制与其重叠且IoU超过某个阈值的其他框,删除冗余的框。
- 保留那些可能标注不同目标的锚框,因为即便是同类别,也可能存在多个目标。
通过这个过程,NMS不仅帮助去除重复的预测框,还确保分类后的锚框能够准确代表实际的目标,提升模型检测的精度和可靠性。这样,模型可以在高效的框架下进行预测,并输出更有意义的结果。
现阶段这个属于通识的部分如果没读懂可以多看几遍,反复梳理下就可以了基本就是这些东西
1. RCNN
RCNN(Region-based Convolutional Neural Networks)是一种用于目标检测的深度学习模型,它通过选择性搜索生成候选区域,对每个区域提取特征,并利用支持向量机进行分类来识别目标物体。RCNN 通过边界框回归进一步精确定位目标物体的位置。尽管 RCNN 在检测精度上表现优异,但由于其依次处理多个候选区域,计算效率较低,后续改进如 Fast RCNN 和 Faster RCNN 则大大提升了检测速度。
RCNN模型中的锚框是通过启发式搜索算法生成的,这种方法类似于运用某种先验知识来确定可能包含目标物体的区域。虽然具体算法细节不必深入理解,但其核心思想是生成这些候选区域供后续处理使用。
在RCNN中,生成的锚框会通过一个预训练的CNN模型(通常在ImageNet上训练)来对锚框内的图像进行特征提取。这一步将原始图像数据转换为更具表现力的特征,为后续的分类和回归提供基础。
接下来,使用支持向量机(SVM)对提取的特征进行分类,以判断锚框内是否包含目标物体。最后,通过线性回归模型对锚框的位置进行调整,以校正锚框相对于真实框的偏移差值可以看到人家叫bounding box 预测,从而精确定位目标物体的位置。这个过程确保了RCNN能够有效识别和定位图像中的目标。
在啰嗦下:
首先选择采用一种启发式规则进行锚框的选择,后面的任务就是对其进行位置的预测。可以理解成启发式规则的理解是一种粗粒度的锚框预测,而下游的边界预测仅仅是一种细粒度的进行更好的优化。
启发式方法(如选择性搜索)确实可以为RCNN生成一系列候选区域(锚框),这些锚框大致表示可能包含目标物体的区域。然而,这些初始锚框的位置通常不是特别精确,所以后续步骤需要进一步优化这些框的位置。
以下是为什么需要进一步调整锚框位置的原因:
- 初始锚框精度有限:启发式方法生成的锚框只是粗略地定位了潜在物体的位置,有时这些框可能过大或过小,或者位置偏离实际目标。
- 提高检测精度:通过边界框回归,RCNN能够更准确地调整锚框的位置和大小,以更好地匹配实际目标。这一步骤确保模型不仅能识别目标,还能更准确地确定目标的边界。
- 减少误检:更精确的锚框位置可以帮助减少误检(false positives),提高整个检测系统的可靠性。
因此,边界框回归是提高目标检测精度和准确性的关键步骤。通过这个阶段,RCNN能够更精确地定位目标物体,使得检测结果更加可靠。
由于启发式规则选择的锚框大小不一,所以需要采用兴趣区域池化层进行对输入CNN的大小保持一致。因此要进行这样处理。
ROI池化(Region of Interest Pooling)是目标检测模型中一个关键的操作,它用于将不同大小的候选区域(ROI)统一转换为固定大小,以便后续的全连接层处理。这是Fast RCNN引入的一项技术,旨在提高RCNN的检测速度和效率。
ROI池化的具体步骤如下:
-
输入特征图:首先,从卷积神经网络提取的特征图中获得不同的ROI。
-
划分网格:将每个ROI划分为固定数量的网格单元。例如,如果目标输出大小为7x7网格,那么就将ROI划分成49个小区域。
-
最大池化:在每个网格单元中,执行最大池化操作。即在每个小区域中选取最大值,作为该区域的输出。这可以有效地缩小特征图规模,并使特征图的大小统一。
-
输出固定大小特征:经过ROI池化后,所有ROI都被转换为相同大小的特征图,无论原始ROI的大小如何。这使得后续的全连接层可以对这些固定大小的特征图进行处理。
通过ROI池化,模型能够更高效地处理不同大小的ROI,并且能够在不增加计算复杂度的情况下,提高检测速度和精度。
2. Fast RCNN
Fast RCNN是一种用于目标检测的深度学习模型,是对RCNN的改进版本。它通过共享计算资源的方式,大大提高了检测速度和效率。Fast RCNN的主要特点是利用整幅图像只需通过一次卷积神经网络(CNN)来生成特征图, 而不是对每个候选区域单独进行特征提取,这种共享计算显著减少了重复计算。生成特征图后,通过选择性搜索获取候选区域(ROI),并使用ROI池化层将这些不同大小的区域转换为固定大小的特征图,从而使得后续的全连接层能够统一处理所有ROI。在Fast RCNN中,分类和回归任务在一个单一的神经网络中同时进行优化 ,每个ROI输出一个类别标签以及边界框的精确位置调整。与RCNN相比,Fast RCNN在训练流程上更加简化,可以在单一阶段中完成训练,而不是分阶段分别训练特征提取、SVM分类和边界框回归。 通过这些改进,Fast RCNN显著加快了目标检测的速度,同时保持了高精度,使其成为目标检测领域的重要进步。
看下图就知道怎么回事了0.0
RCNN 在处理每个锚框时确实需要分别对它们进行特征提取,这导致了计算资源的浪费,尤其是在锚框之间有重叠的情况下。每个锚框都需要单独通过卷积神经网络进行计算,即使它们共享很大一部分图像区域,这种重复计算会消耗大量的时间和资源。
Fast RCNN 解决了这一问题。=它通过对整幅图像进行一次卷积操作来计算特征图,启发式规则会找锚框但是,将这锚框的恶位置定位到特征图中就可以极大限度的减少计算资源的浪费,然后在这个特征图上进行 ROI 池化处理。这种方法使得所有锚框共享同一个特征图,避免了重复计算。通过这种共享计算资源的方式,Fast RCNN 大大提高了处理效率,减少了计算资源的浪费,同时保持了高精度的目标检测能力。。
Fast RCNN通过一个全连接层实现了类别预测和边界框预测,简化了训练流程。经过ROI池化后的固定大小特征图会经过全连接层,模型同时进行两个任务:类别预测和边界框预测。类别预测通过Softmax层输出每个ROI的类别概率分布,确定其所属类别;边界框预测通过回归层输出每个ROI的边界框修正值。这种联合训练方式,使得Fast RCNN在单一网络架构中同时优化两个任务,与RCNN相比,训练过程更加简化、直接,并且有效提高了检测速度和精度。
3. Faster RCNN
Faster RCNN是目标检测领域的一项重要创新,它在Fast RCNN的基础上进一步提高了检测效率。其关键改进在于引入了 区域建议网络-说人话就是将启发式规则生成锚框改成了依赖于网络生成(RPN),使候选区域的生成过程完全可学习且与特征提取共享计算资源。RPN取代了传统的选择性搜索方法,直接在特征图上生成候选区域,通过滑动窗口获取固定数量的锚框,并通过训练预测这些锚框的类别和边界框回归。Faster RCNN和Fast RCNN一样,在整幅图像上进行一次卷积操作生成特征图,以减少重复计算。此外,Faster RCNN在一个网络中同时优化RPN和Fast RCNN模块,通过共享特征图实现高效的候选区域选择和目标检测。通过这些改进,Faster RCNN在保持高精度的同时,显著提升了目标检测的速度,成为目标检测任务中的一种主流方法。
在Faster RCNN中,锚框的生成过程由区域建议网络(RPN)具体实现,以下是更详细的步骤:
-
特征图生成:首先,输入图像通过卷积神经网络(通常是VGG或ResNet)提取特征,生成特征图。
-
滑动窗口:RPN在特征图上使用一个固定大小的滑动窗口,通常是3x3的小网络。这意味着在特征图的每个空间位置(例如特征图大小是WxH),都会应用这个窗口。
-
锚框定义:在每个滑动窗口位置,RPN生成一组锚框。这些锚框是预定义的,具有不同的比例(如1:1, 1:2, 2:1)和尺度(如128x128, 256x256, 512x512)。例如,如果使用3个比例和3个尺度,会在每个位置生成9个锚框。
-
分类与回归:对于每个锚框,RPN进行两个预测: 注意如果说前面的bounding box是对锚框的修正那么这里已经对锚框进行了一次修正了
- 分类:预测每个锚框是前景(包含目标)还是背景。
- 边界框回归:预测每个锚框的形状调整参数,以更好地拟合目标。调整参数包括锚框的中心坐标和尺寸。
-
候选区域筛选:根据分类结果,选择前景锚框,并通过回归调整其坐标和尺寸。通常使用非极大值抑制(NMS)来去除重叠较多的锚框,保留最佳候选区域。
-
输出建议:经过筛选的锚框被输出为候选区域,供Fast RCNN模块进一步处理。
通过这种机制,RPN能够快速生成高质量的候选区域,显著提高了目标检测的效率和精度。然后下游都是一样的所以会进行两次的bounding box修正。所以被称为两阶段算法
背景锚框的处理过程:
在 Faster R-CNN 中,背景锚框不会用于 ROI(Region of Interest)池化。以下是背景锚框在 Faster R-CNN 中的处理方式:
- 锚框分类:
- Faster R-CNN 的区域候选网络(RPN)会对每个锚框进行二分类,判断其是前景(包含目标)还是背景(不包含目标)。
- 背景锚框的处理:
- 在 RPN 阶段,被分类为背景的锚框通常会被丢弃,不会被传递到后续的 ROI 池化和检测网络中。
- 只有被分类为前景的锚框(经过位置回归后)会被进一步处理。
- ROI 池化:
- 经过 RPN 阶段筛选的前景锚框会被送入 ROI 池化层,提取出固定大小的特征用于后续的全连接层进行分类和精确定位。
这样做的目的是为了提高模型的效率和精度,只关注那些可能包含目标的区域,减少不必要的计算。通过这种方式,Faster R-CNN 能够在保持高精度的同时提高检测速度。
4. Mask R-CNN
Mask R-CNN是对Faster R-CNN的扩展,它不仅能够进行目标检测,还可以进行实例分割,即为每个检测到的目标生成像素级的分割掩码。在Faster R-CNN的基础上,Mask R-CNN增加了一个全卷积网络(FCN)来预测目标对象的分割掩码,使得模型能够在进行目标检测的同时输出每个对象的像素级精确分割。此外,Mask R-CNN引入了ROIAlign层,改进了Faster R-CNN中的ROIPool层,通过双线性插值精确处理浮点数坐标,从而提高了分割精度。Mask R-CNN进行多任务学习,除了类别分类和边界框回归,还同时进行掩码预测,这种联合训练方式有效提高了模型的整体性能。通过这些改进,Mask R-CNN在实例分割任务中表现出色,成为图像分割领域的重要方法之一,广泛应用于自动驾驶、图像编辑等领域。
Mask R-CNN通过整合语义分割任务提升模型性能,可以简单理解为通过多种数据增强提高模型的学习能力,使其在语义分割任务上有所提升,从而反过来提高目标检测的性能。一个关键改进是采用了ROIAlign算法,解决了像素层面上数值取整导致的偏移问题。在语义分割中,像素分类非常重要,取整可能会影响任务性能。因此,ROIAlign通过权重分配解决了像素切分问题,将一个像素按比例分配到周围的像素。
ROIAlign的计算也很关键。在之前的ROI处理中,锚框定位和划分为H*W小块时都进行了取整,这影响了像素计算精度。ROIAlign则跳过取整过程,采用双线性插值直接计算每个小块的值。具体细节可以参考这个博客ROIAlign详解。如果对双线性插值不太理解,可以观看这个视频双线性插值。这些改进使得Mask R-CNN在处理复杂图像时更加精确,性能更为优异。
5. SSD
SSD(Single Shot MultiBox Detector)算法是一种用于目标检测的深度学习模型,它能够在单次前向传播中同时进行目标定位和分类。与其他检测算法不同的是,SSD将背景作为一个类别进行处理,而不是在中间阶段抛弃背景信息。这样做的好处是可以更好地利用背景信息来提高检测精度。
注意这里开始将背景作为一种类别进行预测了,之前的算法都是仅仅去对比预测框和真实框,不考虑背景的阈值情况,有疑问的同学可以回顾下内容。
SSD通过不同尺度的特征图进行多尺度检测,从而能够检测不同大小的目标。具体来说,SSD在网络的多个层上生成预测,这些层具有不同的分辨率,能够捕获不同尺度的目标。每个层都生成一组锚框,并对每个锚框进行类别预测和边界框回归。
SSD的设计简化了检测流程,因为它不需要像Fast R-CNN或Faster R-CNN那样的候选区域生成步骤,直接利用卷积特征图进行检测。这使得SSD在保持较高精度的情况下,能够实现实时检测,非常适合嵌入式应用和移动设备。
通过这种结构,SSD能够快速高效地检测图像中的目标,同时将背景信息有效地纳入到检测过程中,提高了模型的鲁棒性和检测性能。
他则是按照一定的规律生成锚框:
其实看下模型的架构就能够一目了然这个算法在做什么了:
每一次都是都进行预测,从而进行多阶段的预测,卷积深度不同可以理解成判断的物体大小也不同。可以看到锚框就是固定生成的所以是单阶段的,后面的预测是对锚框的位置修正。
在 Single Shot MultiBox Detector (SSD) 中,背景确实被视为一个类别。SSD 使用卷积神经网络直接对图像中的每个锚框进行多类别分类,其中背景是其中之一。以下是 SSD 判断锚框是否为背景或其他类别的过程:
- 锚框生成:
- SSD 在不同的特征层上生成多个锚框,这些锚框具有不同的大小和纵横比,以覆盖图像中的各个区域。
- 多类别分类:
- 对每个锚框进行多类别分类,其中一 个类别是背景。 分类网络输出一个类别概率分布,背景类别通常代表“没有目标物体”。
- 类别判断:
- 锚框被预测为背景的可能性较高时,它们被认为是不包含目标的区域。
- 反之,锚框被预测为目标类别(如“人”、“车”等)的可能性较高时,它们被认为是包含目标的区域。
- 损失计算:
- SSD 的损失函数包括分类损失和位置回归损失。分类损失用于判断锚框属于哪个类别(包括背景),位置回归损失用于调整锚框的位置和大小。
- 非极大值抑制(NMS):
- 在预测阶段,SSD 会对检测结果进行非极大值抑制,以去除重复的检测框和减少背景框的干扰。
通过这种方式,SSD 能够有效地判断每个锚框是背景还是目标类别,并进行目标检测。
6. YOLO
YOLO(You Only Look Once)是一种实时目标检测算法,以其快速性和准确性而著称。YOLO将输入图像划分为SxS的网格,每个网格预测固定数量的边界框,并计算这些框的置信度分数和类别概率。为什么这么做呢??因为SSD那种有规律的锚框生成可以直观的看到锚框会重叠的这多浪费啊。所以YOLO的这种划分会让锚框不重叠。
YOLO在目标检测中表现出色,尤其是在速度和效率方面,适用于需要快速处理和实时反馈的场景,如自动驾驶、视频监控等。这种创新性的方法使得YOLO成为目标检测领域的重要算法之一。这种划分每一个锚框就是一个小格格。模型还是就是拿到这个部分内容进行边缘框的预测。生成而已。但是这个其在锚框部分不会重复使用啊。
后续的YOLO进展中,各种改进不断涌现,其中一个直观的创新点是针对边缘框物体的处理。在传统的YOLO版本中,对一些不太极端的边缘框物体的检测可能不够准确。因此,后续版本引入了先验知识进行约束,以确保边界框符合常识。这一创新点通过引入锚框和调整损失函数等方法,使得模型能够更好地捕捉物体的形状和位置。
这种方法通过利用先验知识减小边界框的不确定性,提高了检测精度。比如,使用预定义的锚框尺寸来指导框的预测,使得检测结果更加合理和符合常识。这些改进不仅提升了YOLO在复杂场景中的表现,还增强了其鲁棒性和适用于多种应用的能力。
这样的进展使得YOLO在处理边缘情况时更加优雅,能够更好地适应复杂的现实世界环境,为实时检测任务提供了更可靠的解决方案。
7. 总结
在目标检测领域,多个算法相继涌现,推动了技术的不断进步。RCNN系列,包括RCNN、Fast RCNN和Faster RCNN,通过候选区域的生成和特征提取,逐步提高了检测的速度和精度。RCNN通过选择性搜索生成候选区域,虽然精度高,但计算效率较低。Fast RCNN通过共享特征图减少了冗余计算,显著提高了检测速度。Faster RCNN引入区域建议网络(RPN),使候选区域生成过程可学习,进一步提升了效率。
Mask R-CNN在Faster R-CNN的基础上增加了实例分割功能,通过ROIAlign提高了分割精度,能够实现像素级的目标检测与分割。SSD通过多尺度特征图实现单次检测,将背景作为一个类别处理,简化了检测流程,适合实时应用。
YOLO系列算法以其快速性和准确性著称,通过将图像划分为网格进行检测,避免了锚框的重叠,提高了检测效率。后续版本引入了先验知识进行改进,使得YOLO在复杂场景中表现更为优异。
这些算法各有特点,适用于不同的应用场景。选择合适的目标检测算法需要根据具体任务的需求和特点进行权衡。随着技术的不断发展,目标检测算法将持续演进,为更多应用提供支持。
对了对了,对这些内容感兴趣的朋友们,通过点赞、收藏和关注来表达你们的支持是对我的极大鼓励,如果你感觉还不错的话也可以打赏一杯咖啡钱,非常感谢大家!有任何问题或建议,欢迎随时通过私信与我交流。期待你们的积极参与和反馈。
下一小节将着重说明YOLO系列的算法进行详细的阐述,👏欢迎大家观看哦