分不清RAG 、Function Call、MCP、Agent?一文秒懂它们的区别和联系

🔗 懒人直看版

一图胜千言,我们用一个表格来总结下它们的关系和区别:

特性MCP (模型上下文协议)RAG (检索增强生成)Agent (智能体)Function Call (函数调用)
核心思想标准化 AI 与外部数据/工具的通信协议检索外部知识 + 增强提示 + 生成回答LLM驱动的自主决策任务执行系统LLM请求执行外部预定义函数/工具的能力
本质协议/规范技术框架/方法系统/应用范式模型能力/特性
通俗比喻标准化的 USB 接口写论文前先查资料能干的私人助理助理按指令使用工具
关系链可作为 Agent 调用工具的底层标准常被 Agent 用作获取知识的手段核心指挥官,使用 RAG/Function Call 等工具Agent 执行具体动作的基本手段

1. 大语言模型(LLM)的缺陷

LLM(如GPT-4、Claude)它的核心能力是:

✅ 根据输入的文字,预测最合理的下一段文字。

但它有三大硬伤:

缺陷1:知识截止性
  • LLM的训练数据停留在某个时间点(比如GPT-4是2023年10月),无法主动获取新知识。
  • 后果:问它“今天天气如何?”它只能回答:“根据我的知识库,2023年10月之前上海7月平均气温是…”
缺陷2:无法操作现实世界
  • LLM只是一个“大脑”,没有手和眼睛,不能:

    • 调用API(比如查天气、发邮件)
    • 读取本地文件(比如整理你的D盘)
    • 控制智能家居(比如关灯)
缺陷3:短期记忆有限
  • LLM的上下文窗口(比如GPT-4-turbo是128K tokens)决定了它能“记住”的对话长度。
  • 后果:聊到第50句时,它可能已经忘了你第1句说过“我不喜欢打乒乓球”。

2. 四大技术如何补足LLM?

(1)Agent(智能体)—— AI的“决策中枢”
  • 这是啥? Agent(智能体)是一个更高级、更自主的 AI 系统。它以 LLM 作为核心“大脑”,不仅能理解你的目标,还能自己思考、规划步骤,并主动调用工具(比如 RAG 和 Function Call)来执行任务,与外部环境互动。
  • 为啥要它? 为了完成那些光靠聊天解决不了的复杂任务,比如“帮我规划下周去上海的出差行程,包括订机票酒店,并把日程发给我”。
  • 通俗比喻: Agent 就像一个超级能干的私人助理。你给个目标,它自己就能拆解任务、查信息(可能用 RAG 查公司差旅标准,用 Function Call 查航班酒店)、做决策、执行操作(用 Function Call 调用预订 API),最后给你结果。它是有自主“行动力”的。

Agent的三大核心能力

1. 任务规划(Planning)

  • 用户说:“帮我订一张明天北京飞上海的机票,选靠窗座位。”

  • Agent拆解:

    • ① 查航班(调用RAG或Function Call)
    • ② 筛选符合时间的航班
    • ③ 调用订票API(Function Call)
    • ④ 确认座位偏好(MCP记忆用户喜欢靠窗)

2. 工具调用(Tool Use

  • Agent知道什么时候该用哪个外挂:

    • 需要最新数据 → 调用RAG
    • 需要操作现实世界 → 调用Function Call
    • 需要记忆用户习惯 → 调用MCP

3. 自我反思(Self-Reflection)

  • 如果任务失败(比如航班已售罄),Agent会尝试替代方案(查高铁票)。

Agent的典型架构

用户输入 → Agent大脑(LLM) → 决策  
                        ↓  
         RAG Function Call MCP  
           ↓        ↓         ↓  
        查资料   调API     读记忆
(2)RAG(检索增强生成)—— AI的“实时搜索引擎”
  • 这是啥? RAG (Retrieval-Augmented Generation) 是一种让 AI 回答更靠谱的技术框架。简单说,就是在 AI 回答问题 之前,先让它去指定的资料库(比如公司内部文档、最新的行业报告)里查找 相关信息。
  • 为啥要它? 防止 AI一本正经地“胡说八道”(专业术语叫“幻觉”),让它的回答基于最新的、准确的、特定的事实依据。
  • 通俗比喻: 好比你写论文要引用最新数据。你不会光凭记忆(LLM 的内部知识)瞎写,而是会先去图书馆或数据库查资料 (检索) ,把找到的关键信息整合 (增强)进你的论据里,最后才下笔写作 (生成) 。RAG 就是让 AI 也学会这种“先查再答”的好习惯。
  • 简单例子: 你问 AI:“我们公司最新的报销政策是啥?” RAG 系统先去公司内部知识库检索“报销政策”文档,找到相关段落。然后把这些段落和你的问题一起“喂”给 AI,AI 参考着这些最新政策,给你一个准确的回答。

RAG的工作流程

  1. 用户提问:“2024年欧洲杯冠军是谁?”

  2. 检索模块:

    • 去数据库/互联网搜索“2024欧洲杯 冠军”
    • 返回相关段落(比如:“西班牙2-1英格兰夺冠”)
  3. 生成模块:LLM把检索结果整合成自然语言回答。

RAG的两种用法

  • 主动式:用户明确要求查资料(“帮我查最新的医保政策”)
  • 被动式:Agent自动触发(当LLM发现自己数据过时,悄悄让RAG补课)

RAG的局限性

  • 依赖检索质量(如果数据库没更新,照样答错)
  • 不适合动态数据(比如股票实时价格,更适合用Function Call调API)

(3)Function Call(函数调用)—— AI的“机械手”
  • 这是啥? 它允许 LLM 在需要的时候,请求外部程序帮它做点事。注意,是“请求”,不是“亲自做”。
  • 为啥要它? 因为 LLM 自己查不了实时股价、订不了机票、发不了邮件。有了 Function Call,LLM 就能“指挥”其他工具来完成这些操作。
  • 通俗比喻: 就像你让智能音箱帮你“查下今天北京天气”。音箱(LLM)自己感知不到天气,但它知道要去调用“天气查询”这个App(预定义的函数/工具)。它生成指令(“查北京天气”),App 执行后把结果(“晴,25度”)告诉音箱,音箱再用自然语言告诉你。
  • 简单例子: 你问 AI:“AAPL 股价多少?” AI 判断需要查实时数据,于是生成一个“请求”:{调用函数: "查股价", 参数: {"股票代码": "AAPL"}}。外部程序收到请求,查询API,返回结果 {"价格": 180.50}。AI 再根据这个结果回答你:“苹果当前股价是 180.50 美元。”

Function Call的执行流程

  1. LLM识别用户意图(“这是一个天气查询请求”)
  2. LLM生成结构化参数({ "location": "上海", "date": "2024-07-30" }
  3. 系统调用天气API,返回数据({ "temp": 28℃, "rain": true }
  4. LLM把API结果转换成人类语言:“明天上海28℃,有雨,记得带伞!”

由于它可以让开发者自由定义函数和API调用方式,所以当不同开发者采用不同方式时,就会出现不通用的问题,导致普及困难且需要重复开发。 这就再次凸显出MCP的重要性。

为什么不能直接用API?

因为普通用户不会写代码!Function Call的本质是 “把自然语言翻译成API调用”。

(4)MCP(模型上下文协议)—— AI的“记忆增强”
  • 这是啥? MCP (Model Context Protocol) 是 Anthropic 公司(就是搞出 Claude 那个)在 2024 年底提出并开源的一种标准化通信协议。它定义了一套规则,让 AI 应用(客户端)能以统一的方式,与各种外部数据源或工具(服务器)进行交互。
  • 为啥要它? 想象一下,如果每个工具都有自己独特的接口,那 Agent 想用多个工具时,岂不是要学 N 种“方言”?MCP 就是想统一这个接口标准,让工具“即插即用”。
  • 通俗比喻: MCP 就像是给 AI 大脑和外部工具之间制定了一个通用的 USB 接口标准。无论是本地文件系统、数据库,还是 GitHub 这些应用,只要它们提供符合 MCP 标准的“服务器”,AI 应用(客户端)就能轻松连接并使用它们的功能,无需为每个工具单独适配。

比如我想让Cursor(不限制任何模型)总结这篇文章并将所有图片都下载到本地,以前单纯的自然语言指令是实现不了的,现在有了MCP,就可以接入fetch MCP(专门做信息抓取的),在Agent模式下实现大模型对这些外部信息的抓取。

需要注意的是:

MCP并不绑定任何大模型,也就是你可以在支持MCP的工具(目前包括但不限于Claude客户端、Cursor等)中,在任何大模型下使用MCP。

之所以单独提到这点,是因为和Function Call**有所区别。

如果单从概念上看,大家是不是觉得MCP和Function Call还挺像的,都是让大模型更好地获取外部信息。

实际上,Function Call通常是和大模型绑定的(而MCP并不绑定任何大模型),也不是所有大模型都支持Function Call功能,以扣子中的DeepSeek-R1为例,它有两种模型:

一种是原生DeepSeek R1,一种是支持Function Call版本(扣子自己推出的),后者可以在Single-Agent模式下调用各类扣子工具(插件、工作流、知识库)。


3. 四大技术如何协同作战?

实战案例:用户说“帮我规划一个周末上海游”

(1) Agent拆解任务:
-   ① 查上海景点(RAG)
-   ② 查用户偏好(MCP:上次用户说“讨厌排队”)
-   ③ 订门票/餐厅(Function Call)
(2) RAG检索最新信息:
-   从旅游网站抓取“2024年上海必去景点”,排除需要排队的。
(3) Function Call执行操作:
-   调用携程API订外滩观景台门票
-   调用大众点评API订一家不排队的本帮菜
(4) MCP持续记忆:
-   记录用户本次选择了“文艺路线”,下次推荐博物馆而非游乐场。
(5) LLM生成最终回复:
> “为您规划了轻松文艺的上海周末游:
>
> -   周六上午:参观浦东美术馆(已订票,免排队)
> -   周六中午:在「老吉士」吃正宗本帮菜(已订座)
> -   周日下午:漫步武康路历史街区(免费)  
>     需要调整随时告诉我~”

4. 总结

总结来说:

Agent是一种AI应用,能感知环境、规划任务并调用服务(外部工具、数据库等,包括调用MCP Servers、Function Call)完成任务;如果Agent想要更好地完成任务,一般需要接入足够多的外部工具,而外部工具的接入千差万别;

Function Call是大模型本身的一种能力,可以调用外部函数或API以增强大模型能力,但它同样面临着不同开发者自由定义导致的不标准问题;

MCP则是给AI应用提供了一套标准化协议,方便AI应用更好地访问外部工具,以提升大模型的响应能力。

最终效果:让AI不仅“能说会道”,还能“真办实事”! 🚀

<think>嗯,用户想知道除了MCPRAG之外,还有哪些技术能增强大模型,使其成为成熟的Agent。首先,我得回顾一下已有的知识。根据提供的引用,MCP涉及工具集成市场,RAG是检索增强生成。现在需要找出其他方法。 首先想到的是思维链(CoT),引用1提到过。CoT让模型分步骤思考,提升复杂任务的表现。这可能是一个方法,但用户可能已经知道,需要确认是否属于增强Agent的技术。 然后是微调技术,比如监督微调(SFT)强化学习(RLHF)。这些方法可以调整模型行为,使其更符合特定任务需求。比如ChatGPT就用过RLHF,这可能帮助模型成为更可靠的Agent。 工具调用能力也很关键。让大模型能够调用外部API或工具,比如计算器、数据库,这样扩展功能。引用3提到LibreChat集成工具,可能属于MCP的一部分,但可能有其他独立工具调用方法。 长期记忆机制。大模型通常没有记忆,通过向量数据库或外部存储保存会话历史,让Agent能记住上下文,提升交互连贯性。这可能RAG有关,但也有不同之处。 多模态能力,处理文本、图像、音频等多类型数据。比如GPT-4V,这扩展应用场景,属于增强的重要部分。引用3提到图像生成工具,可能属于多模态。 分层决策框架,将复杂任务分解成子任务,由不同模块处理。比如AutoGPT,这样提高处理效率。引用1中的CoT是分步骤,可能类似,但分层更系统。 自我反思纠错机制,让模型能评估输出并修正。比如让模型检查代码错误后再执行,提升可靠性。这可能涉及强化学习或自我监督。 人类反馈实时整合,比如ChatGPT的实时学习,但需注意数据安全。引用2提到市场动态选择工具,可能结合人类反馈。 知识蒸馏,将大模型压缩成小模型,保持性能同时降低资源消耗。这在边缘计算中重要,帮助Agent部署。 联邦学习,保护隐私的同时训练模型,适合医疗金融等领域。这也是增强Agent适应性的方法。 需要确认这些技术是否在引用中提到,或者是否有其他遗漏。比如引用2提到MCP市场server托管,可能涉及工具调用,但其他如CoT在引用1。需要确保回答中的技术都合理,并引用相关部分。 然后,用户可能需要具体例子或应用场景,所以每个技术点要举例说明。比如工具调用可以举计算天气API,多模态举图像生成。同时,生成的问题要相关,比如自我反思机制如何实现,联邦学习的挑战等。 最后,检查是否符合系统指令:数学公式用$...$,独立公式用$$...$$,中文回答,生成相关问题。确保回答结构清晰,分点说明,引用正确。</think>除了MCP(模块化计算协议)RAG(检索增强生成)之外,以下技术方法可进一步增强大模型能力,推动其向成熟Agent发展: --- ### 一、思维链与分步推理(Chain-of-Thought, CoT) 通过**分步推理提示技术**,模型被引导将复杂任务拆解为可执行的子任务序列。例如: - 数学问题求解:$x^2 + 5x + 6 = 0$ 分解为因式分解步骤 $(x+2)(x+3)=0$[^1] - 代码生成时先规划逻辑流程图再编写具体语法 此方法显著提升模型对复杂问题的结构化处理能力[^1]。 --- ### 二、微调与强化学习 1. **监督微调(SFT)** 使用领域特定数据(如医疗对话、法律文本)调整模型参数,使其适应垂直场景。 2. **基于人类反馈的强化学习(RLHF)** 通过奖励模型对齐人类价值观,例如ChatGPT通过RLHF减少有害输出。数学表达为: $$ \max_{\theta} \mathbb{E}_{(x,y)\sim D}[R(y) - \beta \text{KL}(p_\theta(y|x)||p_{\text{base}}(y|x)))] $$ 其中$R(y)$为反馈评分函数,$\beta$为KL散度约束系数。 --- ### 三、工具调用与API集成 通过**函数调用接口**扩展模型能力边界: ```python # 示例:天气查询工具调用 def get_weather(location): return requests.get(f"https://api.weather.com/{location}") ``` 如LibreChat通过MCP集成代码解释器图像生成工具[^3],类似RapidAPI的生态可动态加载工具[^2]。 --- ### 四、长期记忆与状态管理 1. **向量数据库存储** 使用Pinecone等存储对话历史,实现跨会话状态记忆 2. **记忆检索增强** 通过注意力机制关联当前输入与历史记忆片段 --- ### 五、多模态融合 - **跨模态对齐**:CLIP模型实现图文匹配 - **多模态输入处理**:GPT-4V支持图像描述生成 - **混合输出生成**:DALL·E 3根据文本生成图像 --- ### 六、分层决策框架 采用**AutoGPT式架构**实现任务分解: ``` 主Agent ├─ 子任务1:数据收集 ├─ 子任务2:逻辑分析 └─ 子任务3:结果验证 ``` 结合马尔可夫决策过程(MDP)建模状态转移:$S_{t+1} = f(S_t, A_t)$ --- ### 七、自我反思与纠错机制 通过**ReAct框架**(Reasoning + Acting)实现闭环优化: 1. 生成初步答案 2. 执行结果验证(如代码调试) 3. 基于错误信息修正输出 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值