PostgreSQL——查询优化——预处理

2021SC@SDUSC

概述

我负责的PostgreSQL代码部分:查询的编译与执行
此篇博客的分析内容:查询优化——预处理
在上两篇博客中,我介绍了查询重写的过程,分析了查询重写过程的主要函数。在查询重写之后,就要进行查询优化了。在DBMS中,用户的查询请求可以采用不同的方案来执行。但是不同的方案之间的查询效率确是不一样的。查询效率这一点大型数据库中即存放了大数据集的数据库中十分关键,并且在分布式数据库中也很关键,会直接关联到用户体验感和功能效率。而本篇博客要介绍的查询优化——负责选择一种代价最小的执行方案。
在这里插入图片描述

查询优化

查询优化的最终目的是得到可被执行器执行的最优计划。查询优化的核心思想是:尽量先做选择操作,后做连接操作。因为在数据库的查询中,最耗时的是表的join操作,所以先做选择的操作可以尽量减少表连接的数据量。查询优化的整个过程可以分为预处理,生成路径和生成计划三个阶段。预处理实际上是对查询树(Query结构体)的进一步改造。在预处理的过程中,最重要的是提升子链接和提升子查询,推后表连接。在生成路径阶段,接收到改造后的查询树后,采用相应的动态规划算法,生成最优的连接路径和候选的路径连接表。在生成计划阶段用得到的最优路径,先生成基本计划树然后根据查询语句所对应的计划节点形成完整计划树。本篇博客先分析第一部分——预处理阶段

pg_plan_queries函数

查询分析完成后,它的最终产物——查询树链表将被移交给查询优化模块,。查询优化模块的入口函数是pg_plan_queries函数,它负责将查询树链表变成执行计划链表。pg_plan_queries函数通过调用下面介绍的pg_plan_query函数对每一个查询树进行处理,并将生成的返回。

pg_plan_queries(List *querytrees, int cursorOptions, ParamListInfo boundParams)
{
   
   
	List	   *stmt_list = NIL;//初始化PlannedStmt结构体链表
	ListCell   *query_list;//查询树链表节点的临时变量

	foreach(query_list, querytrees)//遍历查询树
	{
   
   
		Query	   *query = lfirst_node(Query, query_list);//取得第一个节点
		PlannedStmt *stmt;//PlannedStmt结构体
//查询优化模块只会对非UTILITY命令进行处理。
		if (query->commandType == CMD_UTILITY)//如果是CMD_UTILITY类型则不进行优化,如果不是才进行优化
		{
   
   
			//如果是CMD_UTILITY类型则不进行优化
			stmt = makeNode(PlannedStmt);
			stmt->commandType = CMD_UTILITY;
			stmt->canSetTag = query->canSetTag;
			stmt->utilityStmt = query->utilityStmt;
			stmt->stmt_location = query->stmt_location;
			stmt->stmt_len = query->stmt_len;
		}
		else//不是CMD_UTILITY类型则调用pg_plan_query函数进行优化
		{
   
   
			stmt = pg_plan_query(query, cursorOptions, boundParams);
		}
//把处理后的PlannedStmt结构体stmt添加到结构体链表中
		stmt_list = lappend(stmt_list, stmt);
	}
//返回PlannedStmt结构体链表
	return stmt_list;
}

pg_plan_queries函数调用的—— pg_plan_query函数

pg_plan_queries函数通过调用pg_plan_query函数对每一个查询树进行处理。

pg_plan_query(Query *querytree, int cursorOptions, ParamListInfo boundParams)
{
   
   
	PlannedStmt *plan;//PlannedStmt结构体,最后pg_plan_query函数返回plan

	//查询优化模块只会对非UTILITY命令进行处理。
	//如果是CMD_UTILITY类型则不进行优化,如果不是才进行优化
	if (querytree->commandType == CMD_UTILITY)
		return NULL;

	//Planner必须有一个快照,以防它调用用户定义的函数。
	Assert(ActiveSnapshotSet());

	TRACE_POSTGRESQL_QUERY_PLAN_START();

	if (log_planner_stats)
		ResetUsage();//记录统计数据

	//调用优化器 planner函数
	plan = planner(querytree, cursorOptions, boundParams);

	if (log_planner_stats)
		ShowUsage("PLANNER STATISTICS");
   //返回PlannedStmt结构体plan
	return plan;
}

pg_plan_queries函数返回的—— PlannedStmt结构体

typedef struct PlannedStmt
{
   
   
	NodeTag		type; //节点的标识符Tag

	CmdType		commandType;	//计划所对应的命令类型,分别有select|insert|update|delete|utility 

	uint64		queryId;	//查询树id

	bool		hasModifyingCTE;	//WITH语句中是否存在insert|update|delete关键字

	bool		canSetTag;		//是否需要设置命令结果标志

	bool		transientPlan;	//当TransactionXmin改变时是否要重做计划

	bool		parallelModeNeeded; //是否需要并行

	int			jitFlags; //使用哪种形式的JIT

	struct Plan *planTree;		//计划树

	List	   *rtable;			//范围表

	List	   *resultRelations;	//计划中的结果关系,由结果关系的RTE索引构成

	List	 *rootResultRelations;//INSERT/UPDATE/DELETE命令所影响的关系在rtable中的位置(index)

	List	   *subplans;		//子计划,可为空

	Bitmapset  *rewindPlanIDs;	//需要回卷的子计划的索引信息
	List	   *rowMarks;		//用于select for update等

	List	   *relationOids;	//该计划需要的表的oid

	List	   *invalItems;		//计划所依赖的其他对象,用PlanInvalitem结构表示,其中记录了被依赖的对象所属的SysCache的ID以及其对应的系统表元组的TID
	
	List	   *paramExecTypes; //执行的计划所需的参数类型
	
	Node	   *utilityStmt;	//定义游标时用来记录游标定义语句的分析树
	int			stmt_location;	//SQL语句的起始位置
	int			stmt_len;		//SQL语句的长度
} PlannedStmt;
pg_plan_query函数调用的——planner函数

pg_plan_query函数中负责实际生成的是planner函数。

planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
   
   
	PlannedStmt *result;//PlannedStmt结构体,最后以PlannedStmt结构体形式返回

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);//调用standard_planner函数进入标准的查询规划处理,standard_planner函数会返回PlannedStmt 结构体供planner返回结果result
	return result;
}

planner函数通过调用standard_planner函数进入标准的查询优化处理。函数standard_planner负责接受Query查询树及外部传递的参数信息,返回PlannedStmt结构体。(PlannedStmt结构体分析见上)但是由于planner函数又是通过调用不同的函数分别完成计划树的处理,优化,清理。所以,在这里我将主要分析planner函数调用的不同功能的函数。因为我们在这篇分析的是查询优化的预处理阶段,所以先分析subquery_planner函数,因为查询优化的预处理过程是由subquery_planner函数中的部分函数完成的。
在这里插入图片描述

standard_planner函数调用subquery_planner函数的代码:

//standard_planner函数调用subquery_planner函数进行查询优化的预处理阶段
	root = subquery_planner(glob, parse, NULL,
							false, tuple_fraction);

standard_planner函数调用的——subquery_planner函数

subquery_planner函数接受Query查询树,最后通过PlannedStmt结构体的形式返回Plan计划树。(Plan计划树被封装在PlannedStmt结构体中)subquery_planner函数负责创建计划,可以递归处理子查询。subquery_planner函数的工作分为两个部分:
1:依据消除冗余条件,减少查询层次,简化路径生成的基本思想,调用预处理函数对查询树进行处理
2:调用inheritance_planner 或者grouping_planner进入生成计划流程,此过程不对查询树做出实质性改变
subquery_planner函数执行流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_47373497

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值