剑指offer 10:斐波那契数列

本文介绍三种实现方式来求解斐波那契数列的第n项:递归、动态规划及使用临时变量的方法,并分析了各自的空间与时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

大家都知道斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项。

斐波那契数列公式如下:

 

数据范围:1≤n≤39

要求:空间复杂度O(1),时间复杂度O(n) ,本题也有时间复杂度O(logn) 的解法。

输入描述:一个正整数n

返回值描述:输出一个正整数。

示例1:

输入:4

返回值:3

说明:根据斐波那契数列的定义可知,fib(1)=1,fib(2)=1,fib(3)=fib(3-1)+fib(3-2)=2,fib(4)=fib(4-1)+fib(4-2)=3,所以答案为4。

示例2:

输入:1

返回值:1

示例3:

输入:2

返回值:1

解法一:递归

思路:

使用递归解决本问题,需找到递归的出口,即:当n=1或者n=2时,直接返回1;当n>2时,遵循斐波那契数列公式:f[n]=f[n-1]+f[n-2]。如下图:

 代码:

public class Solution {
    public int Fibonacci(int n) {
        if(n == 1 || n == 2){
            return 1;
        }
        return Fibonacci(n-1) + Fibonacci(n-2);
    }
}

解法二:动态规划

思路:

使用数组记录值,通过循环每次计算前两个数之和,赋给当前数组值。

代码:

public class Solution {
    public int Fibonacci(int n) {
        if(n == 1 || n == 2){
            return 1;
        }
        int[] dp = new int[n];
        dp[0] = dp[1] = 1;
        for(int i=2; i < n; i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n-1];
    }
}

解法三:临时变量

思路:

与动态规划相比,空间复杂度为0(1)

代码:

public class Solution {
    public int Fibonacci(int n) {
        if(n == 1 || n == 2){
            return 1;
        }
        int num1 = 1, num2 = 1;
        for(int i=2; i < n; i++){
            num2 = num1 + num2;
            num1 = num2 - num1;
        }
        return num2;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值