题目描述:
大家都知道斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项。
斐波那契数列公式如下:
数据范围:1≤n≤39
要求:空间复杂度O(1),时间复杂度O(n) ,本题也有时间复杂度O(logn) 的解法。
输入描述:一个正整数n
返回值描述:输出一个正整数。
示例1:
输入:4
返回值:3
说明:根据斐波那契数列的定义可知,fib(1)=1,fib(2)=1,fib(3)=fib(3-1)+fib(3-2)=2,fib(4)=fib(4-1)+fib(4-2)=3,所以答案为4。
示例2:
输入:1
返回值:1
示例3:
输入:2
返回值:1
解法一:递归
思路:
使用递归解决本问题,需找到递归的出口,即:当n=1或者n=2时,直接返回1;当n>2时,遵循斐波那契数列公式:f[n]=f[n-1]+f[n-2]。如下图:
代码:
public class Solution {
public int Fibonacci(int n) {
if(n == 1 || n == 2){
return 1;
}
return Fibonacci(n-1) + Fibonacci(n-2);
}
}
解法二:动态规划
思路:
使用数组记录值,通过循环每次计算前两个数之和,赋给当前数组值。
代码:
public class Solution {
public int Fibonacci(int n) {
if(n == 1 || n == 2){
return 1;
}
int[] dp = new int[n];
dp[0] = dp[1] = 1;
for(int i=2; i < n; i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n-1];
}
}
解法三:临时变量
思路:
与动态规划相比,空间复杂度为0(1)
代码:
public class Solution {
public int Fibonacci(int n) {
if(n == 1 || n == 2){
return 1;
}
int num1 = 1, num2 = 1;
for(int i=2; i < n; i++){
num2 = num1 + num2;
num1 = num2 - num1;
}
return num2;
}
}