深入解析:WUP、LIN、RES 三大语义相似度算法

WUP、LIN、RES 介绍及 Python 实现

在自然语言处理(NLP)以及信息检索、文本挖掘等领域,基于 WordNet 的词语语义相似度计算是关键的一环。通过度量两个单词在语义层次结构中的相似程度,我们可以用于词义消歧、文本分类、自动摘要、推荐系统等诸多任务。

本文将详细介绍三种经典的基于 WordNet 的相似度算法:

  1. WUP(Wu & Palmer)
  2. RES(Resnik)
  3. LIN(Lin)

除了它们各自的定义、公式、核心思想外,还会给出在 Python 中(主要基于 NLTK)的示例代码。为了确保“内容扩充至三倍以上”,本文在原有基础上增加了更多的背景知识、应用场景、示例以及常见问题分析。


一、WordNet 与语义相似度概述

1. WordNet 简介

WordNet 是普林斯顿大学开发的大型英语词库,它将英文单词按照“同义词集 (Synset)”组织起来,每个同义词集对应某一语义概念。例如:

  • dog.n.01 表示名词“狗”的一个主要含义;
  • bank.n.01 表示金融机构“银行”的含义;
  • bank.n.02 可能表示“河岸”的含义。

除此之外,WordNet 还在这些同义词集之间建立了“上下位”关系,形成若干棵语义层次树。比如:

  • animal.n.01(动物)是 dog.n.01(狗)的上位概念;
  • mammal.n.01(哺乳动物)则处在“动物”和“狗”之间,更加具体一些。

这种严谨的层次结构与丰富的同义词集,为衡量两个词的语义相关性提供了基础。

2. 语义相似度的意义

衡量两个词的语义相似度在 NLP 和信息检索中是非常常见的基础操作,例如:

  • 文本分类与聚类:基于词的相似度来聚类或分类文档;
  • 推荐系统:度量商品标签或用户标签之间的相似度用于推荐;
  • 信息检索:根据与查询词相似的关键词进行搜索扩展;
  • 问答系统:测量用户问题与知识库中问题的语义相似程度。

二、WUP(Wu & Palmer)相似度

1. 算法背景与动机

Wu & Palmer(1994) 提出的相似度度量方法主要基于以下几点:

  1. 通过 最小公共祖先 (Lowest Common Subsumer, LCS) 来衡量两个概念之间的共享层次位置;
  2. 考虑概念在 WordNet 层次结构中的深度(越靠近根节点越抽象,越靠近叶节点越具体)。

2. 数学公式

设:

  • depth ( C ) \text{depth}(C) depth(C) 表示概念 C C C 在层次树中的深度(通常根节点深度记为 0);
  • C 1 C_1 C1 C 2 C_2 C2 是需要比较相似度的两个概念;
  • C L C S C_{LCS} CLCS 是它们的最小公共祖先。

WUP 相似度定义如下:

sim w u p ( C 1 , C 2 ) = 2 × depth ( C L C S ) depth ( C 1 ) + depth ( C 2 ) \text{sim}_{wup}(C_1, C_2) = \frac{2 \times \text{depth}(C_{LCS})}{\text{depth}(C_1) + \text{depth}(C_2)} simwup(C1,C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跑起来总会有风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值