Vision Transformer模型简述(图像分类篇)

主要素材来源链接 https://blog.csdn.net/qq_37541097?spm=1001.2014.3001.5509

模型的组成

在这里插入图片描述

简单而言,模型由三个模块组成:

  • Linear Projection of Flattened Patches (嵌入层)
  • Transformer Ecoder
  • MLP Head(用于分类)

embeding层

在这里插入图片描述
一般的输入图像是[H,W,C]是三维的,这个格式是不符合Transformer Encoder的输入要求的。所以我们这一层的主要目的就是变换"三维矩阵变成二维矩阵"
主要步骤:
1.将一张图片按给定的大小分成一堆patches。
2.通过线性映射将每个Patch映射到一维向量(token)中。在这里插入图片描述
注意:在输入Transformer Encoder之前注意需要加上[class]token以及Position Embedding

Transformer Encoder模块

在这里插入图片描述Transformer Encoder其实就是重复堆叠Encoder Block L次。

  • Layer Norm (是NLP领域的,这是相对于图像领域的BN)
  • Multi-Head Attention
  • Dropout/DropPath
  • MLP Block,如下面所所示
    在这里插入图片描述

MLP Head

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

栋哥爱做饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值