【时序列】时序列数据如何一步步分解成趋势(trend)季节性(seasonality)和误差(residual)- 详细理解python sm.tsa.seasonal_decompose

【时序列】时序列数据如何一步步分解成趋势(trend)季节性(seasonality)和误差(residual)- 理解python sm.tsa.seasonal_decompose

在做时序列分析的时候,好多教程都告诉你要把时序列分解成趋势,季节性,残差,然后画图看一下有没有趋势变化,有没有季节性。像这样:

import statsmodels.api as sm
decomposition = sm.tsa.seasonal_decompose(train['Count'] ,model='addictive', period=7
### 序列预测中的季节性趋势成分分解 对于序列预测而言,处理学习潜在的季节性趋势成分为提高模型准确性提供了重要手段。一种有效的方法是采用自适应季节-趋势分解算法来解析流式序列数据中存在的转换与波动性变化[^1]。 #### 自适应季节-趋势分解方法概述 该技术能够动态调整以捕捉不同间段内的模式转变,并且可以应对周期性的变动情况。通过这种方法,可以从原始的序列中分离出长期的趋势项以及重复出现的短期波动特征(即所谓的“季节效应”),从而使得后续建模过程更加聚焦于特定类型的变异因素之上。 ```python import numpy as np from statsmodels.tsa.seasonal import STL def adaptive_season_trend_decomposition(time_series, period=7): stl = STL(time_series, seasonal=period) result = stl.fit() trend = result.trend seasonality = result.seasonal residual = result.resid return trend, seasonality, residual ``` 此函数实现了基于STL(Seasonal and Trend decomposition using Loess)的序列分解操作,其中`seasonal`参数指定了预期的季节长度,默认设置为一周七天;返回的结果包含了三个部分——趋势季节性残差分量。 当面对具有明显周期特性的历史记录,还可以考虑使用简单的季节性朴素法来进行初步估计,在这种情况下假设未来某个刻的数据等于之前相同位置上的观测值[^3]。 然而值得注意的是,实际应用过程中往往需要更复杂的统计模型比如ARIMA及其扩展形式如SARIMAX等来充分描述并拟合这些复杂结构下的依赖关系[^4]。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值