resnet从单分类到多分类变更

在尝试将一个二分类模型转换为针对颜色的单层多分类任务时,使用Resnet18架构并修改输出层为对应颜色类别数后,训练过程中出现CUDA错误。错误信息提示类别的数量不匹配以及CUDA内存分配失败。已尝试修改模型参数,但问题依旧存在。参考了一篇关于CIFAR10数据集的教程,调整网络最后一层输出节点数,但错误未解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从二分类改为单层多分类

  1. 数据集格式(当时我是为了做颜色多分类模型)

Mydata

      ---- images

               -------red

               -------yellow

               -------blue

               -------black

               ……

  1. 训练报错:

/opt/conda/conda-bld/pytorch_1623448278899/work/aten/src/THCUNN/ClassNLLCriterion.cu:108: cunn_ClassNLLCriterion_updateOutput_kernel: block: [0,0,0], thread: [31,0,0] Assertion `t >= 0 && t < n_classes` failed.

CUDA error: CUBLAS_STATUS_ALLOC_FAILED when calling `cublasCreate(handle)`

搜了具体是因为classes数量不一致报错

尝试修改resnet传参,依然报错

修改resnet类中文件,修改最后一层输出层为3,依然报错

深度学习-通过Resnet18实现CIFAR10数据分类_将cifar-10分割的小型数据集_机智的程序DOG的博客-CSDN博客

对着此文档从头到尾来做

最后修改网络模型的最后一层输出数字为9

(有多少个类就要改成多少)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科萨福科

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值