深度学习 - RNN训练过程推演

1. 数据准备

字符序列 “hello” 转换为 one-hot 编码表示:

  • 输入: [‘h’, ‘e’, ‘l’, ‘l’]
  • 输出: [‘e’, ‘l’, ‘l’, ‘o’]

2. 初始化参数

我们使用一个单层的 RNN(N VS N),隐藏层大小为2,每次传1个字符。初始参数如下:

W x h = ( 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ) , W h h = ( 0.1 0.2 0.3 0.4 ) , W h y = ( 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ) W_{xh} = \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \\ 0.5 & 0.6 \\ 0.7 & 0.8 \end{pmatrix}, \quad W_{hh} = \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix}, \quad W_{hy} = \begin{pmatrix} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.5 & 0.6 & 0.7 & 0.8 \end{pmatrix} Wxh= 0.10.30.50.70.20.40.60.8 ,Whh=(0.10.30.20.4),Why=(0.10.50.20.60.30.70.40.8)

偏置项初始化为0。

3. 前向传播和反向传播

时间步 1(输入 ‘h’):

输入向量 x 1 = [ 1 , 0 , 0 , 0 ] x_1 = [1, 0, 0, 0] x1=[1,0,0,0]

h 1 = tanh ⁡ ( W x h x 1 + W h h h 0 ) = tanh ⁡ ( ( 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ) ( 1 0 0 0 ) + ( 0.1 0.2 0.3 0.4 ) ( 0 0 ) ) = tanh ⁡ ( ( 0.1 0.3 ) ) = ( 0.0997 0.2913 ) h_1 = \tanh(W_{xh} x_1 + W_{hh} h_0) = \tanh \left( \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \\ 0.5 & 0.6 \\ 0.7 & 0.8 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) = \tanh \left( \begin{pmatrix} 0.1 \\ 0.3 \end{pmatrix} \right) = \begin{pmatrix} 0.0997 \\ 0.2913 \end{pmatrix} h1=tanh(Wxhx1+Whhh0)=tanh 0.10.30.50.70.20.40.60.8 1000 +(0.10.30.20.4)(00) =tanh((0.10.3))=(0.09970.2913)

y 1 = W h y h 1 = ( 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ) ( 0.0997 0.2913 ) = ( 0.1695 0.3889 0.6083 0.8277 ) y_1 = W_{hy} h_1 = \begin{pmatrix} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.5 & 0.6 & 0.7 & 0.8 \end{pmatrix} \begin{pmatrix} 0.0997 \\ 0.2913 \end{pmatrix} = \begin{pmatrix} 0.1695 \\ 0.3889 \\ 0.6083 \\ 0.8277 \end{pmatrix} y1=Whyh1=(0.10.50.20.60.30.70.40.8)(0.09970.2913)= 0.16950.38890.60830.8277

预测值 y ^ 1 = softmax ( y 1 ) \hat{y}_1 = \text{softmax}(y_1) y^1=softmax(y1)

假设真实输出为 ‘e’,对应 one-hot 编码为 y 1 = [ 0 , 1 , 0 , 0 ] y_1 = [0, 1, 0, 0] y1=[0,1,0,0]

交叉熵损失函数:

loss 1 = − ∑ i y 1 i log ⁡ ( y ^ 1 i ) \text{loss}_1 = - \sum_{i} y_{1i} \log(\hat{y}_{1i}) loss1=iy1ilog(y^1i)

梯度计算:

∂ loss 1 ∂ W h y = ( y ^ 1 − y 1 ) h 1 T \frac{\partial \text{loss}_1}{\partial W_{hy}} = (\hat{y}_1 - y_1) h_1^T Whyloss1=(y^1​<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值