数据库查询优化:方法、思路与原则
结合实际代码场景的总结
核心优化方法
连接管理优化:复用连接,减少开销
- 使用连接池:我们通过
DbConnectionPool
来复用数据库连接,避免了频繁创建和销毁连接。这不仅节省了TCP握手和认证等耗时操作的时间,也提高了整体性能。- 实际例子中,无论是
queryApproachDepartureProcedures
还是queryLineWayPoints
,都是通过acquireConnection
获取连接,并且在完成后使用releaseConnection
归还连接。
- 实际例子中,无论是
- 控制连接生命周期:确保每次查询结束后立即释放连接,即使查询失败也不例外。这一点在多线程环境中尤为重要,能有效防止长时间占用连接资源。
SQL语句优化:减少数据传输与计算压力
- 选择需要的字段进行查询:尽量避免使用
SELECT *
,而是只选取必要的字段,这样可以降低I/O开销。- 例如,相比于
SELECT * FROM airport WHERE ...
,更推荐SELECT fixident, magneticcourse FROM airport_star WHERE ...
。
- 例如,相比于
- 提前过滤数据:利用
WHERE
子句尽可能早地筛选出所需的数据,减少返回结果集的大小。 - 批量查询代替循环单条查询:比如,将多个单独的查询合并为一个包含
IN
条件的查询,以此减少与数据库交互的次数。
索引优化:加速查询过滤与排序
- 为关键字段建立索引:针对常用的查询条件(如
WHERE
、JOIN
、ORDER BY
)涉及的字段,应该考虑为其建立索引。 - 避免过度索引:虽然索引可以加快查询速度,但也会增加写入操作的成本,因此应仅对那些经常被查询的字段创建索引。
优化思路
- 减少数据库交互次数:考虑到网络和磁盘I/O往往是性能瓶颈,我们应该尽可能采取“一次多做”的策略,减少不必要的数据库交互。
- 转移计算负担给数据库:鉴于数据库在处理集合操作方面更为高效,我们应该让数据库完成尽可能多的工作,而应用程序则专注于业务逻辑。
- 合理利用索引和统计信息:通过分析查询计划,我们可以更好地理解数据库如何执行我们的查询,并据此调整索引或SQL语句以获得最佳性能。
优化原则
- 数据本地化处理:理想情况下,数据处理应该发生在离数据最近的地方——对于数据库而言,这意味着尽可能在数据库层面上完成数据处理工作。
- 谨慎对待过早优化:在没有明确证据表明某部分是性能瓶颈之前,不要盲目对其进行优化。相反,先通过日志记录找出真正的慢查询点,再进行针对性优化。
- 平衡读写性能:不同的业务场景可能对读写有不同的需求,我们需要根据实际情况调整索引和事务策略,以达到最佳的整体性能。
- 重视线程安全:特别是在多线程环境下,确保连接的获取和释放过程是线程安全的,这对于维护系统的稳定性和数据一致性至关重要。