卡方检验及其在Python中的应用

作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~
个人主页小高要坚强的博客
当前专栏Python之机器学习
本文内容:卡方检验及其在Python中的应用
作者“三要”格言:要坚强、要努力、要学习


目录

一、卡方检验的基本原理

卡方统计量的计算

二、卡方检验的主要用途

1. 两个率或两个构成比比较的卡方检验

用途说明

应用示例

结果解读

2.多个率或多个构成比比较的卡方检验

用途说明

应用示例

3.分类资料的相关分析

用途说明

4.适合度检验

用途说明

应用示例

三、配对卡方检验

1. 例子

2. 使用 SquareTable 和 mcnemar 类进行分析

四、总结


卡方检验(Chi-Square Test)是统计学中一种用于比较分类变量的显著性检验方法。本文将介绍卡方检验的基本原理、主要用途及其在Python中的实现。

一、卡方检验的基本原理

卡方检验的核心思想是检验观察频数与期望频数之间的差异。其零假设(H0)通常为“观察频数与期望频数没有显著差别”。通过计算卡方统计量,可以判断两组分类变量是否独立。

卡方统计量的计算

卡方统计量的计算公式为:

其中,O为实际观察频数,E为期望频数。当观察频数与期望频数完全一致时,卡方值为0;随着差异增大,卡方值也会增大。卡方值的大小还与自由度有关。

二、卡方检验的主要用途

1. 两个率或两个构成比比较的卡方检验

用途说明

当我们需要比较两个不同组别的比例或构成比时,卡方检验提供了一种有效的方法。例如,可以用于比较不同性别的疾病发病率、不同地区的购车率等。

应用示例

假设我们想比较男性和女性在某种疾病的发病率。我们可以收集如下数据:

通过卡方检验,我们可以评估男性和女性的患病率是否存在显著差异。Python执行代码如下:

import pandas as pd
import statsmodels.stats.contingency_tables as tbl

# 创建数据
data = pd.DataFrame({
    '性别': ['男性', '女性'],
    '患病人数': [30, 20],
    '未患病人数': [70, 80]  # 总人数 - 患病人数
})

# 创建交叉表
cross_tab = pd.crosstab(data['性别'], [data['患病人数'], data['未患病人数']])
print("交叉表:")
print(cross_tab)

# 
### 使用 `scipy.stats` 进行方差分析和卡方检验 #### 卡方检验 对于卡方检验,当处理的是分类数据时,可以利用 `chi2_contingency()` 函数来执行这一操作。此函数接受一个二维数组作为输入,该数组代表了不同类别的观测频数分布情况。下面是一个简单的例子展示如何应用这个函数来进行独立性测试: ```python import numpy as np from scipy.stats import chi2_contingency # 创建一个观察到的频率表格 [[a,b],[c,d]] observed_frequencies = np.array([[40, 10], [10, 40]]) # 执行卡方检验 chi2_statistic, p_value, dof, expected = chi2_contingency(observed_frequencies) print(f"Chi-square statistic: {chi2_statistic}") print(f"P-value: {p_value}") print(f"Degrees of freedom: {dof}") print("Expected frequencies:\n", expected) ``` 上述代码展示了如何构建一个基于给定类别组合下的实际发生次数矩阵,并调用 `chi2_contingency()` 来获得χ²统计量、P值以及自由度等信息[^3]。 #### 方差分析 (ANOVA) 为了完成单因素或多因素方差分析,在 `scipy.stats` 中提供了 `f_oneway()` 方法用于比较两个以上样本群体之间的均值差异是否存在显著区别。这里给出一段关于单因素方差分析的例子: ```python from scipy.stats import f_oneway group_1 = [89, 75, 92, 86, 79] group_2 = [81, 72, 85, 78, 74] group_3 = [95, 88, 91, 90, 92] F_statistic, p_value = f_oneway(group_1, group_2, group_3) if p_value < 0.05: print('存在至少一对组间有显著性的平均值差异') else: print('各组间的平均值无明显差异') print(f"F-statistic: {F_statistic}, P-value: {p_value}") ``` 这段程序通过定义三个不同的分组列表模拟实验条件下收集的数据集,之后运用 `f_oneway()` 计算得到 F 统计量及其对应的 P 值以判断这些群组之间是否有任何有意义的区别[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小高要坚强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值