将非线性0-1规划问题转换成线性0-1规划问题

本文介绍了一种将非线性0-1规划问题通过枚举法转换为线性0-1规划问题的方法,并给出一个具体的实例演示。通过对所有可能组合的遍历,找出满足约束条件的最大目标函数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将非线性0-1规划问题转换成线性0-1规划问题

题目: max z=x1+x1x2-x3;
-2
x1+3*x2+x3<=3;
x1,x2,x3=0或1

采用枚举法

import numpy as np

def mat(x1):
    return x1[0]+x1[1]*x1[0]-x1[2]

y0 = 0
for i in range(1,100):
    z1 = np.random.randint(0,2,3)
    if(-2*z1[0]+3*z1[1]+z1[2] <= 3):
        y = mat(z1)
        if y>y0:
            y0=y
            x0=z1

print(x0)
print(y0)


结果:
[Running] python -u “d:\image\matlab.py”
[1 1 0]
2

[Done] exited with code=0 in 0.277 seconds

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值