- 博客(382)
- 资源 (1)
- 收藏
- 关注
原创 2025-03-30-最大最小归一化-蚂蚁金服
假设你正在为一个电子商务网站工作,网站收集了用户的行为数据,包括用户的点击次数(clicks),浏览时间(duration)以及购买次数(purchases),你的任务是分析这些数据,计算出每个用户的行为分数,以便于网站根据分数提供个性化的产品推荐。给定一个用户的行为数据,每个用户有三个特征:点击次数(clicks)、浏览时间(duration)以及购买次数(purchases。
2025-05-05 16:36:02
850
原创 2025-04-18-文本相似度-菜鸟
TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索和文本挖掘的常用加权技术,用于评估一个词对于一个文档集或语料库中的某个文档的重要程度。词频(TF,Term Frequency)TFw词语w在文档中出现的次数文档中所有词语的总数\text{TF}(w) = \frac{\text{词语 } w \text{ 在文档中出现的次数}}{\text{文档中所有词语的总数}}TFw文档中所有词语的总数词语w。
2025-05-05 15:30:31
660
原创 2025-04-26-利用奇异值重构矩阵-美团
在一家致力于图像处理的科技公司,你被分配到一个新项目,目标是开发一种图像压缩算法,以减少存储空间并加速传输。团队决定使用奇异值分解(SVD)对图像进行降维处理,以达到压缩的目的。现在,你需要编写一个程序,对给定的灰度图像矩阵进行奇异值分解,并重构出近似的低秩矩阵。请你帮助团队实现一个使用NumPy库的程序,对给定的矩阵进行奇异值分解,共利用前k个奇异值重构矩阵。
2025-05-04 16:58:41
1205
原创 2025-04-17-用户协同过滤-阿里云
你是一家视频网站的数据工程师,公司希望为用户提供个性化的电影推荐,以提升用户的观看体验。团队决定采用基于协同过滤的推荐算法,通过分析用户的历史评分数据,找出与目标用户兴趣相似的其他用户,进而推荐他们喜欢的电影。你的任务是编写一个程序,基于用户的评分数据,实现一个简单的用户协同过滤推荐系统。请你帮助团队实现一个使用NumPy库的程序,基于协同过滤算法为指定用户生成电影推荐列表。
2025-05-04 15:36:14
731
原创 2025-04-20-最小二乘法-蚂蚁金服
公司计划对产品销售额进行预测,以便更好地进行库存管理和生产规划。你的任务是利用历史数据,通过最小二乘法线性回归模型来预测未来的销售额。假设销售额与产品的价格、广告费用和竞争对手的数量有关。
2025-05-04 11:26:34
945
原创 机器学习代码基础——DL20 RMSProp(Root Mean Square Propagation)
给定一组训练数据,使用RMSProp算法实现线性回归模型。你的任务是编写一个函数,接受特征矩阵和目标值、学习率和衰减率,并返回训练好的模型参数。MSE2m1∑ypred−y2训练方式是批量梯度下降,即每次迭代使用所有样本。参数更新时,使用1e-8防止分母为0。
2025-04-15 21:10:21
732
原创 机器学习代码基础——ML2 使用梯度下降的线性回归
该函数应将 NumPy 数组 X(具有一列截距的特征)和 y(目标)作为输入,以及学习率 alpha 和迭代次数,并返回一个 NumPy 数组,表示线性回归模型的系数。对于只有一个训练样本的训练组而言,每走一步,𝜃𝑗(𝑗= 0,1,…这样,每次根据所有数据求出偏导,然后根据特定的步长𝛼,就可以不断更新𝜃𝑗,直到其收敛。3️⃣ 如果新的𝜃能使𝐽(𝜃)继续减少,继续利用上述步骤更新𝜃,否则收敛,停止迭代。第1行输入X,第2行输入y,第3行输入alpha,第4行输入迭代次数。在梯度为零或趋近于
2025-04-06 11:14:03
765
原创 机器学习代码基础——ML1 使用正规方程的线性回归
输出线性回归模型的系数。函数返回类型是列表类型,第一个是权重,第二个是偏置。函数输入是一个矩阵 X(特征)和向量 y(目标),返回线性回归模型的系数。编写一个使用正规方程执行线性回归的 Python 函数。第1行输入矩阵 X,第2行输入向量 y。最后的答案四舍五入保留小数点后四位。使用矩阵表达形式转化损失函数。将训练数据表示成矩阵形式。
2025-04-06 10:46:28
897
原创 CS224W—07 Machine Learning with Heterogeneous Graphs
CS224W—07 Machine Learning with Heterogeneous Graphs
2024-08-29 09:43:44
1086
原创 CS224W—04 A general perspective on GNNs
CS224W—04 A general perspective on GNNs
2024-08-06 10:31:54
1061
原创 CS224W - Colab 1
原链接:https://colab.research.google.com/drive/1vvIoEqxGl1naopTZbh4bmCOLEiCxvcQq在这个Colab中,我们将编写一个完整的流程来。我们将经历以下3个步骤。首先,我们将加载网络科学中一个经典的图,即。我们将探索该图的多个图统计特性。然后,我们将共同努力将图结构转换为PyTorch张量,以便我们能够在图上执行机器学习。最后,我们将完成第一个图学习算法:一个节点嵌入模型。
2024-08-01 16:20:47
527
原创 CS224W—03 GNN
快速回顾一下上一讲的内容。我们学到的关键概念是节点嵌入(Node Embedding)。我们的直觉是将网络中的节点编码到低维向量空间中。我们希望学习一个接受输入图的函数f,并将其嵌入到低维节点嵌入空间中。在这里,我们投影到二维。图机器学习的关键问题是如何定义这个函数f。我们如何对节点进行编码?目标是定义一个可以表示网络中相似性的相似函数,并在嵌入空间中进行近似。我们需要定义两件事:相似度函数similarity⋅和编码器函数ENC⋅。
2024-07-31 19:24:45
1193
原创 渐进式网络恢复调研
如果发生重大网络中断(例如由地震、洪水等大规模灾害),运营商必须通过一系列修复步骤来恢复其网络基础设施。优化这个序列以在恢复过程中最大化提供的服务数量的问题通常称为渐进式网络恢复(Progressive Network Recovery,PNR)。
2023-07-26 12:00:40
353
原创 异常检测算法——孤立森林(Isolation Forest)2008年
异常检测算法——孤立森林(Isolation Forest)2008年
2023-06-12 21:26:16
2006
1
原创 K8s in Action 阅读笔记——【14】Securing cluster nodes and the network
K8s in Action 阅读笔记——【14】Securing cluster nodes and the network
2023-06-12 17:07:07
1589
1
原创 K8s in Action 阅读笔记——【13】Securing cluster nodes and the network
K8s in Action 阅读笔记——【13】Securing cluster nodes and the network
2023-06-10 22:06:20
1417
1
原创 K8s in Action 阅读笔记——【12】Securing the Kubernetes API server
K8s in Action 阅读笔记——【12】Securing the Kubernetes API server
2023-06-07 17:38:15
1019
原创 K8s in Action 阅读笔记——【11】Understanding Kubernetes internals
K8s in Action 阅读笔记——【11】Understanding Kubernetes internals
2023-06-05 19:54:51
711
1
原创 K8s in Action 阅读笔记——【10】StatefulSets: deploying replicated stateful applications
K8s in Action 阅读笔记——【10】StatefulSets: deploying replicated stateful applications
2023-06-04 21:09:03
242
原创 K8s in Action 阅读笔记——【9】Deployments: updating applications declaratively
K8s in Action 阅读笔记——【9】Deployments: updating applications declaratively
2023-06-03 22:48:32
551
1
原创 K8s in Action 阅读笔记——【8】Accessing pod metadata and other resources from applications
K8s in Action 阅读笔记——【8】Accessing pod metadata and other resources from applications
2023-06-01 22:19:55
210
原创 K8s in Action 阅读笔记——【7】ConfigMaps and Secrets: configuring applications
K8s in Action 阅读笔记——【7】ConfigMaps and Secrets: configuring applications
2023-05-30 15:58:45
868
原创 K8s in Action 阅读笔记——【6】Volumes: attaching disk storage to containers
K8s in Action 阅读笔记——【6】Volumes: attaching disk storage to containers
2023-05-29 19:23:12
796
1
原创 K8s in Action 阅读笔记——【5】Services: enabling clients to discover and talk to pods
K8s in Action 阅读笔记——【5】Services: enabling clients to discover and talk to pods
2023-05-28 16:40:05
932
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人