深度学习 | 关于ResNet你必须知道的20个知识点

ResNet是一种解决深度神经网络中梯度消失问题的模型,通过残差块设计实现超深度网络。该模型在ImageNet2015比赛中夺冠,展示了其在图像识别上的优秀性能。ResNet有不同版本如ResNet-18到ResNet-152,其残差块结构包括1x1卷积来调整通道数,允许网络达到数百层而不影响训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题1: ResNet是什么模型?
答:ResNet是residual network的缩写,意为残差网络。它是一种神经网络结构,可以通过残差块来实现很深的网络结构。

问题2: ResNet解决了什么问题?
答:ResNet解决了在训练很深的神经网络时,梯度消失/爆炸的问题。通过残差块可以让梯度直接传播,使得网络可以达到100-1000层。

问题3: ResNet中的残差块是什么?
答:残差块包含几个层的堆叠,并且有一条“Shortcut”的连接路径让输入直接传到输出,实现H(x) = F(x) + x,其中F(x)是堆叠层的输出。这Allows梯度直接backpropagate。

问题4: ResNet有哪几种残差块?
答:主要有3种残差块:残差块v1、残差块v2和瓶颈残差块。它们的主要区别是Stacked layers的设计以及是否使用1x1卷积来调整通道数。

问题5: ResNet在什么比赛上首次证明了效果?
答:ResNet在ImageNet 2015图像识别挑战赛上获得冠军,首次证明了超深度网络的效果。

问题6: ResNet有哪些主要版本?
答:主要有ResNet-18, ResNet-34, ResNet-50, ResNet-101和ResNet-152等版本。数字表示网络层数,层数越大性能越好但计算量也越大。

问题7: ResNet的第一个残差块的输入输出通道数是多少?
答:在ResNet-50中,第一个残差块的输入输出通道数都是64。

问题8: ResNet是什么类型的网络?
答:ResNet是一种卷积神经网络,属于深度学习网络。

问题9: ResNet提出者是谁?
答:ResNet由Kaiming He等人在2015年提出。

问题10: ResNet实现代码使用的框架是什么?
答:ResNet的原作者使用PyTorch框架实现了ResNet。

问题11: ResNet如何实现超深度网络? 
答:ResNet通过残差块实现超深度网络,残差块让梯度可以直接传播,不会消失/爆炸,可达到1000层。

问题12: ResNet的典型网络结构是什么? 
答:ResNet的典型网络结构是:卷积层->残差块*N->平均池化层->全连接层->softmax。N表示残差块的数量,可以非常大。

问题13: ResNet的残差块中1x1卷积的作用是什么?
答:1x1卷积用于改变通道数,确保残差块输入输出有相同的通道数。

问题14: ResNet中修改图像尺寸的主要用的是什么层?
答:在ResNet中,主要使用步长为2的3x3最大池化层来修改图像尺寸。

问题15: ResNet为什么能比VGGNet等模型更深?
答:因为ResNet有残差连接,可以让梯度直接传播,不会在很深层的时候消失/爆炸,所以可以达到100-1000层,比VGGNet等模型更深。

问题16: ResNet在ImageNet测试集的错误率是多少?
答:ResNet-50在ImageNet测试集的错误率是3.57%。

问题17: ResNet的前几层一般是什么类型的层?
答:ResNet的前几层一般是普通的卷积层,然后跟着很多残差块。

问题18: ResNet的典型超参数设置是什么?
答:一般会设置初始学习率为0.1,momentum为0.9,weight decay为0.0001等。

问题19: ResNet在训练时采用什么优化方法?
答:ResNet的原作者采用SGD+momentum的优化方法训练ResNet。

问题20: ResNet的一些变体模型有哪些?
答:有ResNet-34, ResNet-50, ResNet-101, ResNet-152等不同层数的模型,还有ResNet-v2, ResNeXt, Wide ResNet等变体。

在Java Spring Boot应用程序中实现数据库数据的国际化是一个复杂的过程,因为它不仅涉及到了静态文本资源文件的管理,还涉及到如何将这些本地化的信息映射到动态存储的数据上。以下是几种常见的做法来应对这个问题: ### 方案一:通过枚举或预定义常量集合作为桥梁 如果你的应用场景允许的话,可以预先确定好一部分关键字段的内容形式及其对应的多种语言解释,并把这些内容封装成枚举或者其他固定集合的形式存放在程序内部。每当访问某个具体的记录时,就根据当环境下的Locale去匹配最合适的描述版本返回给客户端显示。 这种方法适用于那些业务规则相对稳定不变而且预期不会频繁变动的信息类别,如订单状态、支付方式等标准选项列表;然而对于个性化程度较高的非结构化数据则显得力不从心了。 ### 方案二:双表关联设计模式 另一个较为通用的设计思路是在原有实体模型的基础上新增一张或多张“翻译”性质的关系型表格专门用来承载多语言版本的具体表述。以文章为例,原本的一篇文章只对应一行主键ID+标题正文这样的简单关系,现在我们可以构造出一个额外的文章详情表,里面包含了诸如原文id、目标语种标识以及该条目在当地文化环境下应有的呈现形态等内容项。查询的时候依据请求方指定的目标language tag对两张表实施JOIN联接运算获取最终结果集。 这种方案的好处是可以灵活适应未来可能出现的新需求点同时保持良好的扩展性和维护性,但是缺点在于增加了系统的复杂度同时也可能导致一定的性能损耗尤其是在面对海量级规模的数据集时需要谨慎评估其影响范围。 ### 实现步骤详解 - 双表关联法 假定我们要为一篇博客帖子(Post)添加标题和摘要两个部分的支持多国字幕的功能,则可以根据下面流程逐步推进下去: #### 步骤 01. 数据建模 创建原始post实体及其相应的Repository接口用于CRUD基本操作。 ```java @Entity @Table(name = "posts") public class Post { @Id @GeneratedValue(strategy = GenerationType.IDENTITY) private Long id; // 其他属性略... } interface PostRepository extends JpaRepository<Post,Long>{} ``` 接着再建立第二个名为PostTranslation的POJO类表示每一种特定方言下所特有的那部分内容。 ```java @Entity @ToString(callSuper=true) @NoArgsConstructor(access= AccessLevel.PRIVATE)// Lombok插件生成无参构造器 @Getter @Setter(onMethod_=@NonNull)// 强制要求提供getter/setter方法的同时不允许为空值赋入 @Table(uniqueConstraints={@UniqueConstraint(columnNames={"postId", "locale"})}) public class PostTranslation { @EmbeddedId// 使用组合键代替单一列作为唯一识别码 protected PostTranslationKey pk=new PostTranslationKey(); /** * 组合关键字包括外键引用原生表primary key + 目标语言标记符 */ @Embeddable public static final class PostTranslationKey implements Serializable{ @Column(nullable=false) String locale;// e.g., zh_CN,en_US @ManyToOne(cascade=CascadeType.ALL ) @JoinColumn(name="postId") Post post; // equals 和hashCode 的定义... } private String title; private String summary; } ``` 然后相应地也要有配套的操作仓储层组件帮助我们更高效便捷地与之交互。 ```java @Repository public interface IPostTranslationDao extends CrudRepository<PostTranslation,PostTranslation.PostTranslationKey>{ Optional<List<PostTranslation>> findByPk_PostOrderByPk_LocaleAsc(Post target); } ``` #### 步骤 02. Service 层逻辑编写 接下来就是最重要的Service层了,在这里我们需要明确当接受到来自外界关于加载某篇blog article的需求信号后应该采取怎样的行动路线才能满足既定目的——即找到贴切于当下上下文境况的最佳诠释变体并反馈出去。一般而言我们会先判断是否存在精确吻合的translation entry存在,如果没有就退而求其次选用系统默认fallback value也就是英文版吧! ```java @Service @Transactional(readOnly=true) @AllArgsConstructor class BloggingServiceImpl implements IBloggingService { private final IPublicationGateway gateway; private final LocaleResolver resolver; @Override public Mono<BlogArticleDTO> getLocalizedContent(Long postId) { return this.gateway.findById(postId).map(it -> mapToTransferObject(resolver.resolveLocale(), it)); } private BlogArticleDTO mapToTransferObject(Locale preferredLanguageTag, Publication aggregateRoot) { var translations=gateway.findTranslationsByAggregateIdentifierAndOrdering(preferredLanguageTag.getISO3Language()); return translations.orElseGet(()-> new BlogArticleDTO( aggregateRoot.getId(), null, aggregateRoot.getTitle(), aggregateRoot.getDescription() )); } } ``` 请注意这里的`IBloggingService`, `IPublicationGateway`都是简化后的伪代码示意而已实际上还要结合实际情况做出适当调整修改哦~ 另外别忘了注册那个负责解析传入HTTP header里面的Accept-Language参数从而得到正确的RegionInfo的对象实例: ```properties # application.properties 配置示例 spring.mvc.locale=en_US spring.mvc.locales=zh_CN,en_US spring.messages.basename=i18n/messages ``` ```java @Bean public AcceptHeaderLocaleResolver acceptHeaderLocaleResolver(){ AcceptHeaderLocaleResolver result=new AcceptHeaderLocaleResolver(); result.setDefaultLocale(new Locale("en","US")); List<Locale> supportedLanguages = Arrays.asList( new Locale("zh","CN"), new Locale("en","US") ); result.setSupportedLocales(supportedLanguages); return result; } ``` --- 经过上面一系列改造之后我们就成功赋予了一个普通的SpringBoot RESTful API具备处理来自世界各地访客朋友发送过来的要求的能力啦!当然除了以上提到的技术手段之外还有很多其他的途径可以选择,比如直接把所有的localizable string都放进NoSQL store当中去托管或是干脆全部交给第三方云服务商打理等等…总之各有千秋取决于各自的特殊诉求咯。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

往日无痕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值