一、2.1数据操作
1、运⾏本节中的代码。将本节中的条件语句X == Y更改为X < Y或X > Y,然后看看你可以得到什么样的张量。
回答: 都是输出结果比较的张量
X==Y时
X<Y时:
X>Y时:
2、⽤其他形状(例如三维张量)替换⼴播机制中按元素操作的两个张量。结果是否与预期相同?
回答: 不一定,得看张量的大小,根据具体情况具体分析。
可以参考这个博客的分析:pytorch的广播机制
二、2.2数据预处理
1、删除缺失值最多的列。
回答: 可以利用isnull对缺失值进行统计,然后利用sum和idxmax找到对应的列序号,最后进行删除。
2、将预处理后的数据集转换为张量格式。
回答: 主要是利用torch.tensor进行转换
三、2.3线性代数
1、证明一个矩阵 𝐀的转置的转置是 𝐀 ,即 ( A T ) T = A (A^T)^T=A (AT)T=A 。
回答: 设 B = A T ,则 B j i = A i j ,设 C = B T = ( A T ) T ,则可知 C i j = B j i ,故 C i j = A i j ,所以 ( A T ) T = A 。 B =A^T,则B_{ji} =A_{ij},设C=B^T=(A^T)^T,则可知C_{ij}=B_{ji},故C_{ij} =A_{ij},所以(A^T)^T=A。 B=AT,则Bji=Aij,设C=BT=(AT)T,则可知Cij=Bji,故Cij=Aij,所以(AT)T=A。
2、给出两个矩阵 𝐀和 𝐁 ,证明“它们转置的和”等于“它们和的转置”,即 A T + B T = ( A + B ) T 。 A^T+B^T = (A+B)^T。 AT+BT=(A+B)T。
回答: 设 A T + B T = C 。则 C i j = A j i + B j i ,又设 D = ( A + B ) ,则 D j i = A j i + B j i ,故 C = D T ,所以 A T + B T = ( A + B ) T 得证。 设 A^T+B^T = C。则C_{ij}=A_{ji}+B_{ji},又设D=(A+B),则D_{ji}=A_{ji}+B_{ji},故C=D^T,所以A^T+B^T = (A+B)^T得证。 </