遗传算法的改进

本文探讨了改进遗传算法的几种途径,包括CHC算法和自适应遗传算法。CHC算法采用跨代精英选择、异物种重组和大变异策略,以增强种群多样性。自适应遗传算法通过动态调整交叉和变异概率,根据搜索进程推进优化。遗传算法的基本步骤涉及编码、适应度函数、选择、交叉和变异操作。这些改进策略有助于遗传算法在解决复杂问题时提高效率和寻找全局最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

改进的途径:

CHC算法:

自适应遗传算法:

遗传算法步骤:


改进的途径:

1、改变遗传算法的组成成分

2、采用混合遗传算法

3、采用动态自适应技术

4、采用非标准的遗传操作算子

5、采用并行遗传算法


CHC算法:

C:跨代精英选择策略(父代和子代的精英基因即最优基因合并,然后去选择合并后那堆里面最好的。选出的精英直接保留下来,不需要轮盘赌等等)

H:异物种重组(不同物种之间基因交叉融合,希望增加种群的多样性“混血儿”)

C:大变异(让变异的概率覆盖面大一点,传统0.1左右变异概率有时候很难找到最优解)


自适应遗传算法:

随着搜索进程的推进,概率不断改进,不断变化

交叉概率Pc越大,新个体产生的速度越快。但过大会使优秀个体的结构很快被破坏;Pc过小,搜索过程缓慢,以至于停滞不前。

变异概率Pm过小,不易产生新个体结构;Pm过大,变成纯粹的随机搜索。没达到最优解,停滞不前的时候,可以适当调整一下。

思想:区别对待,画一条平均线。好的个体优待一下,交叉概率大一点。

注意:自适应适用于进化后期,不适于进化前期,因为前期的优秀个体有可能是局部最优点;

小生境:在自然界中,往往特征、性状相似的物种相聚在一起,并在同类中交配繁衍后代。

NGA:将每一代个体划分为若干类,每类选出个体组成一个种群。

共享机制:共享函数的值越大,表明个体之间越相似。


遗传算法步骤:

1、编码:如TSP问题中,直接采用解的表示形式,有30个城市,就定义编码长度为30位,每位编码代表所经过的城市序号,无重复。

2、适应度函数:如路径距离

3、选择方法:如轮盘赌

4、交叉:如有序交叉法(随机选择两个交叉点,两个父个体交换两个交叉点的中间部分)

5、变异:如两点变异(随机选择同一个个体的两个点进行交换)

6、定义初始参数:交叉概率,变异概率,终止迭代次数

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zachery.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值