目录
改进的途径:
1、改变遗传算法的组成成分
2、采用混合遗传算法
3、采用动态自适应技术
4、采用非标准的遗传操作算子
5、采用并行遗传算法等
CHC算法:
C:跨代精英选择策略(父代和子代的精英基因即最优基因合并,然后去选择合并后那堆里面最好的。选出的精英直接保留下来,不需要轮盘赌等等)
H:异物种重组(不同物种之间基因交叉融合,希望增加种群的多样性“混血儿”)
C:大变异(让变异的概率覆盖面大一点,传统0.1左右变异概率有时候很难找到最优解)
自适应遗传算法:
随着搜索进程的推进,概率不断改进,不断变化
交叉概率Pc越大,新个体产生的速度越快。但过大会使优秀个体的结构很快被破坏;Pc过小,搜索过程缓慢,以至于停滞不前。
变异概率Pm过小,不易产生新个体结构;Pm过大,变成纯粹的随机搜索。没达到最优解,停滞不前的时候,可以适当调整一下。
思想:区别对待,画一条平均线。好的个体优待一下,交叉概率大一点。
注意:自适应适用于进化后期,不适于进化前期,因为前期的优秀个体有可能是局部最优点;
小生境:在自然界中,往往特征、性状相似的物种相聚在一起,并在同类中交配繁衍后代。
NGA:将每一代个体划分为若干类,每类选出个体组成一个种群。
共享机制:共享函数的值越大,表明个体之间越相似。
遗传算法步骤:
1、编码:如TSP问题中,直接采用解的表示形式,有30个城市,就定义编码长度为30位,每位编码代表所经过的城市序号,无重复。
2、适应度函数:如路径距离
3、选择方法:如轮盘赌
4、交叉:如有序交叉法(随机选择两个交叉点,两个父个体交换两个交叉点的中间部分)
5、变异:如两点变异(随机选择同一个个体的两个点进行交换)
6、定义初始参数:交叉概率,变异概率,终止迭代次数